Answer:
Speciation was allopatric or peripatric, but would depend on the number of individuals that dispersed from the original populations.
Explanation:
- There are two types of speciation: allopatric and peripatric.
- Allopatric speciation occurs when the species of same population gets isolated that results in lack of gene flow.
- From the isolated population, new species are formed then it is known as the peripatric speciation.
- All these isolation of populations and formation of new species depends upon the initial or original group of species that was dispersed.
Yes, the different frequencies of evolutionary change could affect allele frequency in a population.
<h3>What are the agents of evolutionary change? </h3>
All populations are usual in a constant state of evolution. This means that all the species are continuously changing their genetic makeup over different generations. These changes can be subtle or they can be spontaneous.
If a population is not evolving, it is said to be in Hardy - Weinberg state. In this state, the allele frequency and the genetic makeup of the population will remain the same across generations.
The agents of evolutionary change defy the Hardy - Weinberg state. These are mutation, gene flow, non-random mating, natural selection and genetic drift.
Read more about evolutionary change, here
brainly.com/question/22172139
#SPJ4
Chromosomes condense during prophase
I don't think changing seasons can REMOVE CO2 from the air, but I do think instead it could add it to the air. It's a long process that involves several ecosystems and stuff. But, as the climate is getting warmer, ice caps are melting and within these ice caps... there are trapped bubbles of CO2 that are released ( I am not sure if this adds a lot of CO2 to the atmosphere, but I am sure that it does contribute to CO2 concentration).
In relation to your last statement... plant growth would actually reduce CO2 in the air because of the process of photosynthesis. Plants take in CO2 and give out O2 for us to breathe. In turn we conduct cellular respiration in which we take in the O2 and give out the CO2. So, plants are actually one good solution for decreasing CO2 levels.