Answer:
0
Step-by-step explanation:
If ∑aₙ converges, then lim(n→∞)aₙ = 0.
Using ratio test, we can determine if the series converges:
If lim(n→∞) |aₙ₊₁ / aₙ| < 1, then ∑aₙ converges.
If lim(n→∞) |aₙ₊₁ / aₙ| > 1, then ∑aₙ diverges.
lim(n→∞) |(100ⁿ⁺¹ / (n+1)!) / (100ⁿ / n!)|
lim(n→∞) |(100ⁿ⁺¹ / (n+1)!) × (n! / 100ⁿ)|
lim(n→∞) |(100 / (n+1)|
0 < 1
The series converges. Therefore, lim(n→∞)aₙ = 0.