63%
First, we have to take 20.00 - 7.40 which gets us 12.60.
Then, we use the formula where we put the 12.60 on top of a fraction bar, and the 20.00 on bottom.
We do 12.60 x 100 which makes 1260.
Lastly, we divide that by the 20.00 which gets us 63.
So, Julie has 63% of her money left.
I hope this helped!!!
Consider right triangle ΔABC with legs AC and BC and hypotenuse AB. Draw the altitude CD.
1. Theorem: The length of each leg of a right triangle is the geometric mean of the length of the hypotenuse and the length of the segment of the hypotenuse adjacent to that leg.
According to this theorem,

Let BC=x cm, then AD=BC=x cm and BD=AB-AD=3-x cm. Then

Take positive value x. You get

2. According to the previous theorem,

Then

Answer: 
This solution doesn't need CD=2 cm. Note that if AB=3cm and CD=2cm, then

This means that you cannot find solutions of this equation. Then CD≠2 cm.
Answer:
Only d) is false.
Step-by-step explanation:
Let
be the characteristic polynomial of B.
a) We use the rank-nullity theorem. First, note that 0 is an eigenvalue of algebraic multiplicity 1. The null space of B is equal to the eigenspace generated by 0. The dimension of this space is the geometric multiplicity of 0, which can't exceed the algebraic multiplicity. Then Nul(B)≤1. It can't happen that Nul(B)=0, because eigenspaces have positive dimension, therfore Nul(B)=1 and by the rank-nullity theorem, rank(B)=7-nul(B)=6 (B has size 7, see part e)
b) Remember that
. 0 is a root of p, so we have that
.
c) The matrix T must be a nxn matrix so that the product BTB is well defined. Therefore det(T) is defined and by part c) we have that det(BTB)=det(B)det(T)det(B)=0.
d) det(B)=0 by part c) so B is not invertible.
e) The degree of the characteristic polynomial p is equal to the size of the matrix B. Summing the multiplicities of each root, p has degree 7, therefore the size of B is n=7.
Answer:
1/2
Step-by-step explanation:
1/3 + 1/6 = 1/2