5 10 15 20 25 30 35 40 45 50 55 60 64 70 75 80 85 90 95 100, 105 110 115 120 125 130 (135) 150 155 160 165 170 (175)
Five multiplied each number.
Hope I helped!
-RainyClouds~
Part A
<h3>Answer:
h^2 + 4h</h3>
-------------------
Explanation:
We multiply the length and height to get the area
area = (length)*(height)
area = (h+4)*(h)
area = h(h+4)
area = h^2 + 4h .... apply the distributive property
The units for the area are in square inches.
===========================================================
Part B
<h3>Answer:
h^2 + 16h + 60</h3>
-------------------
Explanation:
If we add a 3 inch frame along the border, then we're adding two copies of 3 inches along the bottom side. The h+4 along the bottom updates to h+4+3+3 = h+10 along the bottom.
Similarly, along the vertical side we'd have the h go to h+3+3 = h+6
The old rectangle that was h by h+4 is now h+6 by h+10
Multiply these expressions to find the area
area = length*width
area = (h+6)(h+10)
area = x(h+10) ..... replace h+6 with x
area = xh + 10x .... distribute
area = h( x ) + 10( x )
area = h( h+6 ) + 10( h+6 ) .... plug in x = h+6
area = h^2+6h + 10h+60 .... distribute again twice more
area = h^2 + 16h + 60
You can also use the box method or the FOIL rule as alternative routes to find the area.
The units for the area are in square inches.
Answer:
-1/3
Step-by-step explanation:
This equation is in y-intersept form; y=mx+b, where m is the slope
<span>Part I: Determining Dimensions
Arnold
has been given a 6 foot by 6 foot sheet of cardboard to make an open
box by cutting an equal size square from each corner, folding up the
resulting flaps, and taping at the corners. Your task is to label
dimensions on a sketch with the same size variable cut from each corner.
*You don't have to draw one, just explain what it would look like*
Answer:
Base of the box:
it is a square
side of the base = 6 foot - x - x. = 6 - 2x
Height of the box: x
Part II: Analyze
How does each variable expression relate to the length, width, and height of the box when folded?
Answer:
length = width = 6 - 2x
height = x
Part III: Extend your Findings
a. Based upon the variables you used in Part II, write a product for the volume.
Answer:
Volume = area of the base × height
Volume = (6 - 2x)² x
b. Expand the product to write a volume function.
Answer:
Volume = (36 - 24x + 4x²)x
Volume = 36x - 24x² + 4x³
c. What domain makes sense for the volume?
Answer:
Since x is a physical dimension x is greater than 0
Since the lenght of the cardboarc sheet is 6 and two squares are cut off, x has to be less than 3
So, the domain is (0, 3)
d. Guess and check values to find the size cut that produces a maximum volume.
*Six guesses are required*
Answer:
x </span>Volume = 36x - 24x² + 4x³
0.1 36(0.1) - 24(0.1)² + 4(0.1)³ = 3.36
0.5 36(0.5) - 24(0.5)² + 4(0.5)³ = 12.5
1.0 36 - 24 + 4 = 16
1.5 36(1.5) - 24(1.5)² + 4(1.5)³ = 13.5
2.0 36(2) - 24(2)² + 4(2)³ = 8
1.7 36(1.7) - 24(1.7)² + 4 (1.7)³ = 11.49
1.2 36(1.2) - 24(1.2)² + 4(1.2)³ = 15.55
Then you can guess that the maximum volume is pretty close to 16 and it is whenx is close to 1.
2.9