The rigth equation to anticipate the profit after t years is p(t) = 10,000 (1.075)^t
So, given that both store A and store B follow the same equations but t is different for them, you can right:
Store A: pA (t) 10,000 (1.075)^t
Store B: pB(t'): 10,000 (1.075)^t'
=> pA(t) / pB(t') = 1.075^t / 1.075^t'
=> pA(t) / pB(t') = 1.075 ^ (t - t')
And t - t' = 0.5 years
=> pA(t) / pB(t') = 1.075 ^ (0.5) = 1.0368
or pB(t') / pA(t) = 1.075^(-0.5) = 0.964
=> pB(t') ≈ 0.96 * pA(t)
Which means that the profit of the store B is about 96% the profit of store A at any time after both stores have opened.
Answer:
85.5 reals
Step-by-step explanation:
Aqui, usando a função de análise, queremos saber a quantidade de dinheiro que deve ser investido para fornecer o número de visualizações.
A maneira como podemos resolver isso é através da substituição. Precisamos apenas substituir F (x) na equação e resolver x, o que nos dará a idéia da quantidade de dinheiro a ser investido.
matematicamente
F (x) = 40x + 80
3500 = 40x + 80
40x = 3500-80 40x = 3420 x = 3420/40
x = 85,5 reais
Answer:
57
Step-by-step explanation:
variables
substitution
Step 1: Find the slope
(y-y)/(x-x) = (8-8)/(9+4) = 0
Step 2: Substitute into the slope intercept equation
y - y = m(x - x)
y - 8 = 0(x - 9)
If the problem just wants plain, slope intercept form, then this is your answer.
If not, y = 8
- Multiply (-2x-4) by -5:
[(-5)(-2x) + (-5)(-4)] +5x - 4 = -29
= 10x+20+5x-4=-29
- Combine Like Terms:
(10x+5x) + (20-4) = -29
15x+16=-29
- Subtract 16 from each side
15x+16 -16 = -29 -16
15x = -45
x = -3