Answer:

Explanation:
Consider two particles are initially at rest.
Therefore,
the kinetic energy of the particles is zero.
That initial K.E. = 0
The relative velocity with which both the particles are approaching each other is Δv and their reduced masses are

now, since both the masses have mass m
therefore,

= m/2
The final K.E. of the particles is

Distance between two particles is d and the gravitational potential energy between them is given by

By law of conservation of energy we have

Now plugging the values we get



This the required relation between G,m and d
Answer: Option (d) is correct.
Explanation:
Given, 1,152 British thermal units
1 British thermal unit = 1055.06 joules
So, in 1,152 British thermal units there will be :

Hence, from the given options the closest answer is of option (d). So, option (d) is correct.
The correct answer to the question is- 
CALCULATION:
As per the question, the electric field generated by the source charge is 1236 N/C at a distance of 4 m.
Hence , electric field E = 1236 N/C.
The distance of the point R = 4m
We are asked to calculate the charge possessed by the source.
The electric field produced by a source charge of Q at a distance R is calculated as -
Electric field E = 
Here,
is called the absolute permittivity of the free space.
Hence, the charge of source is calculated as -
Q = 
= 
= 
= 
= 
Hence, the charge of source is 
An object with more inertia is both harder to start and to stop. <span>The heavier (or more mass) of the object - harder to start & stop. For instance, a large rock vs. small rock. Large rock harder to get rolling & harder to stop as compared to smaller rocks. Hope this answers the question.</span>
Option C
Both technicians are correct
<h3><u>
Explanation:</u></h3>
HVAC persists for Heating Ventilation and Air Conditioning. Its design in a vehicle is to cleanse, cool, flame, control, and dehumidify the air accessing the cabin, depending on the inputs of the operator as thoroughly as electronic sensors. Various systems will practice diverse ways of regulating airflow into the cabin but all act on identical basic principles.
The automatic systems are electric systems that want different inputs from sensors that intimate climate circumstances to obtain the aspired temperature. Vacuum actuators and/or electric motors control the air doors/valves in these systems.