Answer:
whats the question
Step-by-step explanation:
Answer:
S = {0,2,3,4}
P(X=0) = 0.573 , P(X=2) = 0.401 , P(x=3) = 0.025, P(X=4) = 0.001
Mean = 0.879
Standard Deviation = 1.033
Step-by-step explanation:
Let the number of people having same birth month be = x
The number of ways of distributing the birthdays of the 4 men = (12*12*12*12)
The number of ways of distributing their birthdays = 12⁴
The sample space, S = { 0,2,3,4} (since 1 person cannot share birthday with himself)
P(X = 0) = 
P(X=0) = 0.573
P(X=2) = P(2 months are common) P(1 month is common, 1 month is not common)
P(X=2) = 
P(X=2) = 0.401
P(X=3) = 
P(x=3) = 0.025
P(X=4) = 
P(X=4) = 0.001
Mean, 

Standard deviation, ![SD = \sqrt{\sum x^{2} P(x) - \mu^{2}} \\SD =\sqrt{ [ (0^{2} * 0.573) + (2^{2} * 0.401) + (3^{2} * 0.025) + (4^{2} * 0.001)] - 0.879^{2}}](https://tex.z-dn.net/?f=SD%20%3D%20%5Csqrt%7B%5Csum%20x%5E%7B2%7D%20P%28x%29%20-%20%5Cmu%5E%7B2%7D%7D%20%20%5C%5CSD%20%3D%5Csqrt%7B%20%5B%20%280%5E%7B2%7D%20%2A%200.573%29%20%2B%20%282%5E%7B2%7D%20%20%2A%200.401%29%20%2B%20%283%5E%7B2%7D%20%2A%200.025%29%20%2B%20%284%5E%7B2%7D%20%2A%200.001%29%5D%20-%200.879%5E%7B2%7D%7D)
SD = 1.033
Answer:
I cant see the picture. could you put it in the comments
Step-by-step explanation:
The trapezoidal approximation will be the average of the left- and right-endpoint approximations.
Let's consider a simple example of estimating the value of a general definite integral,

Split up the interval
![[a,b]](https://tex.z-dn.net/?f=%5Ba%2Cb%5D)
into

equal subintervals,
![[x_0,x_1]\cup[x_1,x_2]\cup\cdots\cup[x_{n-2},x_{n-1}]\cup[x_{n-1},x_n]](https://tex.z-dn.net/?f=%5Bx_0%2Cx_1%5D%5Ccup%5Bx_1%2Cx_2%5D%5Ccup%5Ccdots%5Ccup%5Bx_%7Bn-2%7D%2Cx_%7Bn-1%7D%5D%5Ccup%5Bx_%7Bn-1%7D%2Cx_n%5D)
where

and

. Each subinterval has measure (width)

.
Now denote the left- and right-endpoint approximations by

and

, respectively. The left-endpoint approximation consists of rectangles whose heights are determined by the left-endpoints of each subinterval. These are

. Meanwhile, the right-endpoint approximation involves rectangles with heights determined by the right endpoints,

.
So, you have


Now let

denote the trapezoidal approximation. The area of each trapezoidal subdivision is given by the product of each subinterval's width and the average of the heights given by the endpoints of each subinterval. That is,

Factoring out

and regrouping the terms, you have

which is equivalent to

and is the average of

and

.
So the trapezoidal approximation for your problem should be