Answer:
the angle shown is a straight angle value of which is equal to 180°
3x + 30. 6 = 180
3x = 180 - 30. 6
3x = 149.4
<h3>x = 49.8</h3>
4028 mi 2< M is the expression you were looking for i think
Answer:

General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Distributive Property
<u>Algebra I</u>
- Expand by FOIL (First Outside Inside Last)
- Factoring
- Function Notation
- Terms/Coefficients
<u>Calculus</u>
Derivatives
The definition of a derivative is the slope of the tangent line.
Limit Definition of a Derivative:
Step-by-step explanation:
<u>Step 1: Define</u>
f(x) = 7x² + 7x + 3
Slope of tangent line at x = 4
<u>Step 2: Differentiate</u>
- Substitute in function [Limit Definition of a Derivative]:
![\displaystyle f'(x)= \lim_{h \to 0} \frac{[7(x + h)^2 + 7(x + h) + 3]-(7x^2 + 7x + 3)}{h}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20f%27%28x%29%3D%20%5Clim_%7Bh%20%5Cto%200%7D%20%5Cfrac%7B%5B7%28x%20%2B%20h%29%5E2%20%2B%207%28x%20%2B%20h%29%20%2B%203%5D-%287x%5E2%20%2B%207x%20%2B%203%29%7D%7Bh%7D)
- [Limit - Fraction] Expand [FOIL]:
![\displaystyle f'(x)= \lim_{h \to 0} \frac{[7(x^2 + 2xh + h^2) + 7(x + h) + 3]-(7x^2 + 7x + 3)}{h}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20f%27%28x%29%3D%20%5Clim_%7Bh%20%5Cto%200%7D%20%5Cfrac%7B%5B7%28x%5E2%20%2B%202xh%20%2B%20h%5E2%29%20%2B%207%28x%20%2B%20h%29%20%2B%203%5D-%287x%5E2%20%2B%207x%20%2B%203%29%7D%7Bh%7D)
- [Limit - Fraction] Distribute:
![\displaystyle f'(x)= \lim_{h \to 0} \frac{[7x^2 + 14xh + 7h^2 + 7x + 7h + 3] - 7x^2 - 7x - 3}{h}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20f%27%28x%29%3D%20%5Clim_%7Bh%20%5Cto%200%7D%20%5Cfrac%7B%5B7x%5E2%20%2B%2014xh%20%2B%207h%5E2%20%2B%207x%20%2B%207h%20%2B%203%5D%20-%207x%5E2%20-%207x%20-%203%7D%7Bh%7D)
- [Limit - Fraction] Combine like terms (x²):

- [Limit - Fraction] Combine like terms (x):

- [Limit - Fraction] Combine like terms:

- [Limit - Fraction] Factor:

- [Limit - Fraction] Simplify:

- [Limit] Evaluate:

<u>Step 3: Find Slope</u>
- Substitute in <em>x</em>:

- Multiply:

- Add:

This means that the slope of the tangent line at x = 4 is equal to 63.
Hope this helps!
Topic: Calculus AB/1
Unit: Chapter 2 - Definition of a Derivative
(College Calculus 10e)
Answer:
12
Step-by-step explanation:
I + (-3) = 9
Lets isolate I:
9 - (-3) = I
12 = I
Check:
12 + (-3) = 9
9 = 9
It is (-4,-5)
If you would like I could draw it out for you and attach it :) So then you understand how to get the answer