1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
marusya05 [52]
3 years ago
14

Reversing coins there are n coins, each showing either heads or tails. we would like all the coins to show the same face. what i

s the minimum number of coins that must be reversed?
Mathematics
1 answer:
Katarina [22]3 years ago
8 0
If there are n coins, then the smallest (minimum) amount of coins we need to flip is 1. The reason why is because the best case scenario would be flipping all heads except the last coin which is tails. This scenario is rare if n is large, but still possible.
You might be interested in
Someone help please I'm having a hard time understanding​
Over [174]

Answer:

the angle shown is a straight angle value of which is equal to 180°

3x + 30. 6 = 180

3x = 180 - 30. 6

3x = 149.4

<h3>x = 49.8</h3>
8 0
3 years ago
The big island of Hawaii is the largest island with an area of 4,028 mi2 the next biggest island is Maui let m represent Maui.wr
KatRina [158]
4028 mi 2< M is the expression you were looking for i think
7 0
3 years ago
Use the limit definition of the derivative to find the slope of the tangent line to the curve
ale4655 [162]

Answer:

\displaystyle f'(4) = 63

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

Distributive Property

<u>Algebra I</u>

  • Expand by FOIL (First Outside Inside Last)
  • Factoring
  • Function Notation
  • Terms/Coefficients

<u>Calculus</u>

Derivatives

The definition of a derivative is the slope of the tangent line.

Limit Definition of a Derivative: \displaystyle f'(x)= \lim_{h \to 0} \frac{f(x+h)-f(x)}{h}  

Step-by-step explanation:

<u>Step 1: Define</u>

f(x) = 7x² + 7x + 3

Slope of tangent line at x = 4

<u>Step 2: Differentiate</u>

  1. Substitute in function [Limit Definition of a Derivative]:                              \displaystyle f'(x)= \lim_{h \to 0} \frac{[7(x + h)^2 + 7(x + h) + 3]-(7x^2 + 7x + 3)}{h}
  2. [Limit - Fraction] Expand [FOIL]:                                                                    \displaystyle f'(x)= \lim_{h \to 0} \frac{[7(x^2 + 2xh + h^2) + 7(x + h) + 3]-(7x^2 + 7x + 3)}{h}
  3. [Limit - Fraction] Distribute:                                                                            \displaystyle f'(x)= \lim_{h \to 0} \frac{[7x^2 + 14xh + 7h^2 + 7x + 7h + 3] - 7x^2 - 7x - 3}{h}
  4. [Limit - Fraction] Combine like terms (x²):                                                     \displaystyle f'(x)= \lim_{h \to 0} \frac{14xh + 7h^2 + 7x + 7h + 3 - 7x - 3}{h}
  5. [Limit - Fraction] Combine like terms (x):                                                      \displaystyle f'(x)= \lim_{h \to 0} \frac{14xh + 7h^2 + 7h + 3 - 3}{h}
  6. [Limit - Fraction] Combine like terms:                                                           \displaystyle f'(x)= \lim_{h \to 0} \frac{14xh + 7h^2 + 7h}{h}
  7. [Limit - Fraction] Factor:                                                                                 \displaystyle f'(x)= \lim_{h \to 0} \frac{h(14x + 7h + 7)}{h}
  8. [Limit - Fraction] Simplify:                                                                               \displaystyle f'(x)= \lim_{h \to 0} 14x + 7h + 7
  9. [Limit] Evaluate:                                                                                                 \displaystyle f'(x) = 14x + 7

<u>Step 3: Find Slope</u>

  1. Substitute in <em>x</em>:                                                                                                \displaystyle f'(4) = 14(4) + 7
  2. Multiply:                                                                                                           \displaystyle f'(4) = 56 + 7
  3. Add:                                                                                                                  \displaystyle f'(4) = 63

This means that the slope of the tangent line at x = 4 is equal to 63.

Hope this helps!

Topic: Calculus AB/1

Unit: Chapter 2 - Definition of a Derivative

(College Calculus 10e)

3 0
3 years ago
What is the solution to l + (-3)=9
wariber [46]

Answer:

12

Step-by-step explanation:

I + (-3) = 9

Lets isolate I:

9 - (-3) = I

       12 = I

Check:

12 + (-3) = 9

          9 = 9

7 0
3 years ago
Three vertices of a rectangle have coordinates(−2,3) , (2,2) , and (0,−6) .
pshichka [43]
It is (-4,-5)

If you would like I could draw it out for you and attach it :) So then you understand how to get the answer
6 0
3 years ago
Other questions:
  • I need help figuring out angle 1
    15·1 answer
  • 36 is _______% less than 60?<br><br> 24%<br><br><br> 40%<br><br><br> 60%<br><br><br> 67%
    10·2 answers
  • Answer this question in one minutes
    9·1 answer
  • Mr. Trager has $500.00 to spend at a bicycle store. All prices listed below include tax.
    12·2 answers
  • What city is this please no links
    14·2 answers
  • PLEASE HELP<br> Round your answer to the nearest hundredth
    11·1 answer
  • How many cups are in 500mL
    12·2 answers
  • Eight friends ate ⅝ of a bag of chips. What fraction of the bag did each person eat, assuming that they each ate the same amount
    10·2 answers
  • (02.03 MC) The figure shows two triangles on a coordinate grid: A coordinate grid is shown from positive 6 to negative 6 on the
    10·1 answer
  • What makes this equation true?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!