1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ch4aika [34]
3 years ago
15

If molly walks 4 miles in 70 minutes, then molly will walk how far in 100 minutes if she walks at the same speed the whole time?

if necessary, round your answer to the nearest tenth of a mile.
Mathematics
1 answer:
barxatty [35]3 years ago
7 0
Find out how far Molly walks in 1 minute.

4/70 = 0.057 miles
In 100 minutes,
0.057x100 = 5.714 miles

Rounded to the nearest tenth, 5.7 miles.

Hope I helped :)
You might be interested in
Let P and Q be polynomials with positive coefficients. Consider the limit below. lim x→[infinity] P(x) Q(x) (a) Find the limit i
jenyasd209 [6]

Answer:

If the limit that you want to find is \lim_{x\to \infty}\dfrac{P(x)}{Q(x)} then you can use the following proof.

Step-by-step explanation:

Let P(x)=a_{n}x^{n}+a_{n-1}x^{n-1}+\cdots+a_{1}x+a_{0} and Q(x)=b_{m}x^{m}+b_{m-1}x^{n-1}+\cdots+b_{1}x+b_{0} be the given polinomials. Then

\dfrac{P(x)}{Q(x)}=\dfrac{x^{n}(a_{n}+a_{n-1}x^{-1}+a_{n-2}x^{-2}+\cdots +a_{2}x^{-(n-2)}+a_{1}x^{-(n-1)}+a_{0}x^{-n})}{x^{m}(b_{m}+b_{m-1}x^{-1}+b_{n-2}x^{-2}+\cdots+b_{2}x^{-(m-2)}+b_{1}x^{-(m-1)}+b_{0}x^{-m})}=x^{n-m}\dfrac{a_{n}+a_{n-1}x^{-1}+a_{n-2}x^{-2}+\cdots +a_{2}x^{-(n-2)}+a_{1}x^{-(n-1)})+a_{0}x^{-n}}{b_{m}+b_{m-1}x^{-1}+b_{n-2}x^{-2}+\cdots+b_{2}x^{-(m-2)}+b_{1}x^{-(m-1)}+b_{0}x^{-m}}

Observe that

\lim_{x\to \infty}\dfrac{a_{n}+a_{n-1}x^{-1}+a_{n-2}x^{-2}+\cdots +a_{2}x^{-(n-2)}+a_{1}x^{-(n-1)})+a_{0}x^{-n}}{b_{m}+b_{m-1}x^{-1}+b_{n-2}x^{-2}+\cdots+b_{2}x^{-(m-2)}+b_{1}x^{-(m-1)}+b_{0}x^{-m}}=\dfrac{a_{n}}{b_{m}}

and

\lim_{x\to \infty} x^{n-m}=\begin{cases}0& \text{if}\,\, nm\end{cases}

Then

\lim_{x\to \infty}=\lim_{x\to \infty}x^{n-m}\dfrac{a_{n}+a_{n-1}x^{-1}+a_{n-2}x^{-2}+\cdots +a_{2}x^{-(n-2)}+a_{1}x^{-(n-1)}+a_{0}x^{-n}}{b_{m}+b_{m-1}x^{-1}+b_{n-2}x^{-2}+\cdots+b_{2}x^{-(m-2)}+b_{1}x^{-(m-1)}+b_{0}x^{-m}}=\begin{cases}0 & \text{if}\,\, nm \end{cases}

3 0
3 years ago
Find an
Mkey [24]
Counting backwards next is 1
8 0
3 years ago
-5y = -5
Vsevolod [243]

-5y = -5 = 1

7x + 6y = 7

=-1.167

your answer is B) no

4 0
3 years ago
What is the equation in vertex form of the quadratic function with a vertex at (-1, -4) that goes through (1, 8)?
cestrela7 [59]

Answer:

y = 3(x+1)^2 - 4

Step-by-step explanation:The general form of the equation of a quadratic function whose vertex is (h,k) and whose leading coefficient is a is:

y - k = a(x-h)^2, or

y      = a(x-h)^2 - k

Substituting the coefficients of the vertex (-1, -4), we get:

y      = a(x + 1)^2 - 4

Substituting the coordinates of the given point, (1,8), we get:

8      = a(1+1)^2 - 4, which simplifies to:

8      = a(2)^2 - 4, or

8  = 4a - 4.  Then 4a = 12, and a = 3.

Thus, the desired equation is y = 3(x+1)^2 - 4 (answer j).


5 0
3 years ago
Jackson has 1 cup of butter. If he wants to use all the butter, how many batches of brownies can he make?
nikdorinn [45]

Answer:

C

Step-by-step explanation:

3 0
3 years ago
Other questions:
  • Simplify: (-4a + b – 2c) – (3a + 2b –c)
    7·2 answers
  • Solve tangent 195 using sum and difference formula
    11·1 answer
  • What does point g represent
    7·1 answer
  • What is 51.5% of 845 million
    7·1 answer
  • Which is the best estimate of the correlation coefficient for the scatter plot?
    9·2 answers
  • Help with maths questions please
    11·2 answers
  • Which pair of triangles are cungruent
    6·1 answer
  • The water table _____.
    7·2 answers
  • Use the parabola tool to graph the quadratic function f(x)=2x^2−8x+2.
    6·1 answer
  • If represents the number of entry tickets sold and the hours of space rental, which inequality represents the constraints in the
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!