Answer: be found in group 17 and be highly reactive
Explanation:
Elements are distributed in groups and periods in a periodic table.
Elements that belong to same groups will show similar chemical properties because they have same number of valence electrons.
Flourine, chlorine, bromine and iodine are elements which belong to Group 17. All of them contain 7 valence electrons each and need one electron to complete their octet.
The chemical reactivity of elements is governed by the valence electrons present in the element and thus all of them are highly reactive.
We assign the variables: T as tension and x the angle of the string
The <span>centripetal acceleration is expressed as v²/r=4.87²/0.9 and (0.163x4.87²)/0.9 = </span><span>T+0.163gcosx, giving T=(0.163x4.87²)/0.9 – 0.163x9.8cosx.
</span>
<span>(1)At the bottom of the circle x=π and T=(0.163x4.87²)/0.9 – .163*9.8cosπ=5.893N. </span>
<span>(2)Here x=π/2 and T=(0.163x4.87²)/0.9 – 0.163x9.8cosπ/2=4.295N. </span>
<span>(3)Here x=0 and T=(0.163x4.87²)/0.9 – 0.163x9.8cos0=2.698N. </span>
<span>(4)We have T=(0.163v²)/0.9 – 0.163x9.8cosx.
</span><span>This minimum v is obtained when T=0 </span><span>and v verifies (0.163xv²)/0.9 – 0.163x9.8=0, resulting to v=2.970 m/s.</span>
Answer:
internet of things.
Explanation:
The mention Smart refrigerator with information communication system to both manufacturer as well as the customer is an example of internet of things.
The interconnection via internet of computing devices embedded in everyday objects, enabling them to send and receive data. It is also the ability to transfer data without human to human or computer to human interaction.
Answer:
the easy way to describe this is to use a light as an example.
Explanation:
Voltage is pretty much the loop used to help use a lightbulb to emit light. Without voltage, we would be unable to use lightbulbs. This applies to much more than a lightbulb, but it's the easiest way to describe how voltage works.
Soothing? I don't really know are there any choices?