Answer:
They are equivalent
Step-by-step explanation:
x/4 multiplied by y/y equals to xy/4y. Therefore, they are equivalent
Nano her I don’t speak Thai mastee meowing tell Mr. meowing then why does my cat have a beard and why is he talking like a man and why is he being Harry Potter and he just took lasagna out the oven and threw it at the neighbors and scorching hot as I get sauce
the large bag is 5/6 lb, the smaller bags will be 1/3 lb, so it should be 5/6 ÷ 1/3
![\bf \cfrac{5}{6}\div \cfrac{1}{3}\implies \cfrac{5}{\underset{2}{~~\begin{matrix} 6 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~}}\cdot \cfrac{~~\begin{matrix} 3 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~}{1}\implies \cfrac{5}{2}\implies 2\frac{1}{2}](https://tex.z-dn.net/?f=%5Cbf%20%5Ccfrac%7B5%7D%7B6%7D%5Cdiv%20%5Ccfrac%7B1%7D%7B3%7D%5Cimplies%20%5Ccfrac%7B5%7D%7B%5Cunderset%7B2%7D%7B~~%5Cbegin%7Bmatrix%7D%206%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%7D%7D%5Ccdot%20%5Ccfrac%7B~~%5Cbegin%7Bmatrix%7D%203%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%7D%7B1%7D%5Cimplies%20%5Ccfrac%7B5%7D%7B2%7D%5Cimplies%202%5Cfrac%7B1%7D%7B2%7D)
Here's a pattern to consider:
1+100=101
2+99=101
3+98=101
4+97=101
5+96=101
.....
This question relates to the discovery of Gauss, a mathematician. He found out that if you split 100 from 1-50 and 51-100, you could add them from each end to get a sum of 101. As there are 50 sets of addition, then the total is 50×101=5050
So, the sum of the first 100 positive integers is 5050.
Quick note
We can use a formula to find out the sum of an arithmetic series:

Where s is the sum of the series and n is the number of terms in the series. It works for the above problem.