By definition of circumference, the length of the arc EF (radius: 6 in, central angle: 308°) shown in red is approximately equal to 32.254 inches.
<h3>How to calculate the length of an arc</h3>
The figure presents a circle, the arc of a circle (s), in inches, is equal to the product of the <em>central</em> angle (θ), in radians, and the radius (r), in inches. Please notice that a complete circle has a central angle of 360°.
If we know that θ = 52π/180 and r = 6 inches, then the length of the arc CD is:
s = [(360π/180) - (52π/180)] · (6 in)
s ≈ 32.254 in
By definition of circumference, the length of the arc EF (radius: 6 in, central angle: 308°) shown in red is approximately equal to 32.254 inches.
<h3>Remark</h3>
The statement has typing mistakes, correct form is shown below:
<em>Find the length of the arc EF shown in red below. Show all the work.</em>
To learn more on arcs: brainly.com/question/16765779
#SPJ1
Answer:
Step-by-step explanation:
You add 10 more so it should be 19cm
Mark brainliest please:)
The answer is Angle ACB
The angle is form from both line A and C
Answer:
- 1. Adjacent, 2. Vertical, 3. Neither
Step-by-step explanation:
1.
- The first pair is adjacent as they have common side.
2.
- The second pair is vertical as opposite angles of the crossed lines.
3.
- The third pair has no relationship with each other, so neither is the answer.