Answer:Both are correct
Explanation:
The opposite DTC also comprises of the wiring or ground. If the opposite DTC can be set it is the components that is faulty and if otherwise it is still the components that is faulty
the unit for volt is v
The volt (symbol: V) is the derived unit for electric potential, electric potential difference (voltage), and electromotive force.
We will apply the Newton's second Law so the we will be able to find the acceleration.
F (tot) = ma
a = F(tot) / m
a = 32.0 N / 65.0 kg = 0.492 m/s^2
Approximately 0.492 m/s^2 is her initial acceleration if she is initially stationary and wearing steel-bladed skates.
Answer:
The statement that the net magnetic field at the center of this square is zero is false.
The net magnetic field inside a conductor must be zero - This is a true statement
Explanation:
The net magnetic field at the center of this square is not equal to zero.
The net magnetic field at the center of this square is given by the equation below:
B = 2√2μ₀I/πₐ
Where a = the side of the loop, and I is the current.
Thus, the statement that the net magnetic field at the center of this square is zero is false.
The net magnetic field inside a conductor must be zero - This is a true statement because the total charge on the conductor must be equal to zero.
Answer:
The acceleration of the electron is 1.457 x 10¹⁵ m/s².
Explanation:
Given;
initial velocity of the emitted electron, u = 1.5 x 10⁵ m/s
distance traveled by the electron, d = 0.01 m
final velocity of the electron, v = 5.4 x 10⁶ m/s
The acceleration of the electron is calculated as;
v² = u² + 2ad
(5.4 x 10⁶)² = (1.5 x 10⁵)² + (2 x 0.01)a
(2 x 0.01)a = (5.4 x 10⁶)² - (1.5 x 10⁵)²
(2 x 0.01)a = 2.91375 x 10¹³

Therefore, the acceleration of the electron is 1.457 x 10¹⁵ m/s².