300 000 000 m/s in km/s
1000 m = 1km
300 000 000 m/s = 3 * 10⁸ m/s = 3 * 10⁵ *10³ m/s
= 3 * 10⁵ *10³ m/s
= 3 * 10⁵ km/s
Speed = 3 * 10⁵ km/s
Momentum of the object can be calculated by multiplying the mass of the object and the velocity of the moving object. In this case, the starting situation should be the object should be moving, else there is no velocity and thus momentum is equal to zero .Answer is C
R = 0.407Ω.
The resistance R of a particular conductor is related to the resistivity ρ of the material by the equation R = ρL/A, where ρ is the material resistivity, L is the length of the material and A is the cross-sectional area of the material.
To calculate the resistance R of a wire made of a material with resistivity of 3.2x10⁻⁸Ω.m, the length of the wire is 2.5m and its diameter is 0.50mm.
We have to use the equation R = ρL/A but first we have to calculate the cross-sectional area of the wire which is a circle. So, the area of a circle is given by A = πr², with r = d/2. The cross-sectional area of the wire is A = πd²/4. Then:
R =[(3.2x10⁻⁸Ω.m)(2.5m)]/[π(0.5x10⁻³m)²/4]
R = 8x10⁻⁸Ω.m²/1.96x10⁻⁷m²
R = 0.407Ω
Answer: C.
250 kg-m/s
Explanation:
Given that the
Mass M = 1,500 kg
Force F = 500 N
Time t = 0.5 seconds
From Newton's second law of motion which state that the rate of change of momentum is proportional to the applied force.
F = mV/t
Ft = mV
Where ft = impulse: the product of time and applied force
Substitutes force and time into the formula
Ft = 500 × 0.5 = 250 Ns