Distribute -10
-10n - 50 = 40
Add 50 to both sides
-50 + 50 would cancel
- 50 + 40 = -10
Divide by -10
-10/-10 = 1
N=1
Answer:
![KL=45\tan 50^{\circ}\sin 50^{\circ}\approx 41.08\\ \\KN=45\sin 50^{\circ}\approx 34.47](https://tex.z-dn.net/?f=KL%3D45%5Ctan%2050%5E%7B%5Ccirc%7D%5Csin%2050%5E%7B%5Ccirc%7D%5Capprox%2041.08%5C%5C%20%5C%5CKN%3D45%5Csin%2050%5E%7B%5Ccirc%7D%5Capprox%2034.47)
Step-by-step explanation:
Given:
KL ║ NM ,
LM = 45
m∠M = 50°
KN ⊥ NM
NL ⊥ LM
Find: KN and KL
1. Consider triangle NLM. This is a right triangle, because NL ⊥ LM. In this triangle,
LM = 45
m∠M = 50°
So,
![\tan \angle M=\dfrac{\text{opposite leg}}{\text{adjacent leg}}=\dfrac{NL}{LM}=\dfrac{NL}{45}\\ \\NL=45\tan 50^{\circ}](https://tex.z-dn.net/?f=%5Ctan%20%5Cangle%20M%3D%5Cdfrac%7B%5Ctext%7Bopposite%20leg%7D%7D%7B%5Ctext%7Badjacent%20leg%7D%7D%3D%5Cdfrac%7BNL%7D%7BLM%7D%3D%5Cdfrac%7BNL%7D%7B45%7D%5C%5C%20%5C%5CNL%3D45%5Ctan%2050%5E%7B%5Ccirc%7D)
Also
(angles LNM and M are complementary).
2. Consider triangle NKL. This is a right triangle, because KN ⊥ NM . In this triangle,
(alternate interior angles)
(angles KNL and KLN are complementary).
So,
![\sin \angle KNL=\dfrac{\text{opposite leg}}{\text{hypotenuse}}=\dfrac{KL}{LN}=\dfrac{KL}{45\tan 50^{\circ}}\\ \\KL=45\tan 50^{\circ}\sin 50^{\circ}\approx 41.08](https://tex.z-dn.net/?f=%5Csin%20%5Cangle%20KNL%3D%5Cdfrac%7B%5Ctext%7Bopposite%20leg%7D%7D%7B%5Ctext%7Bhypotenuse%7D%7D%3D%5Cdfrac%7BKL%7D%7BLN%7D%3D%5Cdfrac%7BKL%7D%7B45%5Ctan%2050%5E%7B%5Ccirc%7D%7D%5C%5C%20%5C%5CKL%3D45%5Ctan%2050%5E%7B%5Ccirc%7D%5Csin%2050%5E%7B%5Ccirc%7D%5Capprox%2041.08)
and
![\cos \angle KNL=\dfrac{\text{adjacent leg}}{\text{hypotenuse}}=\dfrac{KN}{LN}=\dfrac{KN}{45\tan 50^{\circ}}\\ \\KN=45\tan 50^{\circ}\cos 50^{\circ}=45\sin 50^{\circ}\approx 34.47](https://tex.z-dn.net/?f=%5Ccos%20%5Cangle%20KNL%3D%5Cdfrac%7B%5Ctext%7Badjacent%20leg%7D%7D%7B%5Ctext%7Bhypotenuse%7D%7D%3D%5Cdfrac%7BKN%7D%7BLN%7D%3D%5Cdfrac%7BKN%7D%7B45%5Ctan%2050%5E%7B%5Ccirc%7D%7D%5C%5C%20%5C%5CKN%3D45%5Ctan%2050%5E%7B%5Ccirc%7D%5Ccos%2050%5E%7B%5Ccirc%7D%3D45%5Csin%2050%5E%7B%5Ccirc%7D%5Capprox%2034.47)
<span>( 7 x - 11 )
<span>( 7 - 5x )</span></span>
A given angle measures 90°.. Then, note that the total measurement of the triangle is 180°... Subtract 180° by 90°, and the other angles must add up to 90°!
Good luck!
Answer:
= -21.6x + 168
Step-by-step explanation:
Combine Like Terms
13x -34.6x + 168
13x + - 34.6x + 168
(13x+ -34.6x) + 168
-21.6x + 168