The correct response is this: NATURAL SELECTION FAVORED THE EVOLUTION OF LARGER BRAINS, THIS SUGGESTS THAT THE BENEFITS OF LARGE BRAIN OUTWEIGHS THE COSTS.
In fossils record, the shift from Australopithecus to homo is characterized by larger body and brain sizes and all through subsequent evolution, brain size has to continue to get bigger. The possession of large brain make man to be much more advanced in thinking than all other animals.
Answer:
it would be c
Explanation: when the volcano erupted the huge blast sent the new species of tree seed into the air where they landed and begin to grow
Answer:
There is no image showing the shape of an enzyme, however, the question can still be answered based on basic understanding. The answers are;
- Less binding of substrate
- won't follow the lock-and-key pattern of enzyme binding
Explanation:
An enzyme is a biological catalyst that regulates the rate of chemical reactions in living systems. Enzymes are proteinous in nature and every protein is made up of an amino acid sequence. The amino acid sequence forms a three-dimensional shape that determines the functionality of the enzyme.
Enzymes catalyze reactions by binding to their substrates in a lock and key pattern. This makes enzymes substrate-specific. If the enzyme's normal shape changes, the following will occur:
- Less binding of substrate
- won't follow the lock-and-key pattern of enzyme binding.
Answer:
<em>The total amount of energy transferred during photosynthesis for this ecosystem equals</em><em> 260,000 kcal/m2/yr.</em>
Explanation:
To answer this question, we need to know that
- gross primary productivity (GPP) = energy captured and converted into chemical energy during photosynthesis
- net primary productivity (NPP) = difference between GPP and respiration rate
So, to calculate GPP we need to sum NPP to Respiration rate. This if,
NPP = 165,000 kcal/m2/yr
R = 95,000 kcal/m2/yr
NPP = GPP – Respiration
Then,
GPP = NPP + R
GPP = 165,000 kcal/m2/yr + 95,000 kcal/m2/yr
GPP = 260,000 kcal/m2/yr
<h2>Order of parts of a microscope
</h2>
First – ocular lens
Second – Body tube
Third – Revolving Nosepiece
Fourth – Objective lens
Fifth – Coverslip
Explanation:
Ocular lens: The lens present in the eyepiece at the top of the microscope, close to the eyes, through which a person looks through the microscope to view the specimen. Magnification of ocular lens in a compound microscope is usually 10x
Body tube: The tube that connects the eyepiece with the objective of the microscope for continuous optical alignment.
Revolving Nosepiece: The turret that holds the objective and revolves to select the objective lens according to its magnification
Objective lens: The objective lens is located above the specimen rack. Objective lens creates the primary image of the specimen viewed through the eyepiece. A single compound microscope can have more than two objective lens and their magnification ranges from 4x, 10x, 40x, 100x power.
Coverslip: The cover glass which covers the objective lens and prevent from touching the specimen
. This is the object directly above the specimen.