The answer would be 45.3592 killograms
The decrease in the value of the toy is $9.25 if you subtract $ 0.75 from $10.00 then you get $9.25 so it's $9.25 cheaper
Answer: 205
Step-by-step explanation:
Initially, Jill received ballots from the student council election = 45
After, dropping ballot by Mr. Alvarez, new ballots he has = 250
Hence, The Ballots drooping by Mr. Alvarez = new ballots Jill has - Initial ballots Jill has
= 250 - 45
= 205
Therefore, Mr. Alvarez drop off 205 ballots.
Answer:
Basketball = 0.743
Step-by-step explanation:
Given
Tennis:
Starting Height = 200 cm
Rebound Height = 111 cm
Soccer Balls;
Starting Height = 200 cm
Rebound Height = 120 cm
Basketball:
Starting Height = 72 inches
Rebound Height = 53.5 inches
Squash:
Starting Height = 100 inches
Rebound Height = 29.5 inches
For measuring the bounciness of a ball, one needs that starting Height of and the rebound Height of that ball which have been listed out above.
Calculating the rebound ratio of each balls.
Rebound Ratio = Rebound Height/Starting Height
Tennis: 111/200= 0.556
Soccer Balls: 120/200 = 1.667
Basketball: 53.5/72 = 0.743
Squash: 29.5/100 = 0.295
From the rebounding ratio calculated above, it can be seen that basketball has the highest rebound ratio of 0.743 and is the bounciest of all whole Squash has the least rebound of 0.295 ratio, hence it is the least bounce of all.
Answer:
Set A's standard deviation is larger than Set B's
Step-by-step explanation:
Standard deviation is a measure of variation. One way to judge the value of standard deviation is by looking at the range of the data. In general, a dataset with a smaller range will have a smaller standard deviation.
The range of data Set A is 25-1 = 24.
The range of data Set B is 18-8 = 10.
Set A's range is larger, so we expect its standard deviation to be larger.
__
The standard deviation is the root of the mean of the squares of the differences from the mean. In Set A, the differences are ±12, ±11, ±10. In Set B, the differences are ±5, ±3, ±1. We don't actually need to compute the RMS difference to see that it is larger for Set A.
Set A's standard deviation is larger than Set B's.