1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nataliya [291]
3 years ago
12

Solve the equation 1.6=7.6-5(k+1.1)

Mathematics
1 answer:
zepelin [54]3 years ago
8 0
7.6 - 5(k + 1.1) = 1.6

7.6 - 5(k + 1.1) - 7.6 = 1.6 - 7.6

-5(k +1.1) = -6

-5(k + 1.1) -6
-------------- = ---------
-5 -5

k + 1.1 = 6
-----
5

k + 1.1 - 1.1 = 6
----- - 1.1
5

k = 0.1
You might be interested in
Please someone tell me the answers to these I dont remember how to do it ​
Delvig [45]

Answer:

1)  (3 - 6x)(-8) = (-8)(3) - (-8)(6x) = -24 - (-48x) = -24 + 48x = 48x - 24

2) (-12)(2x - 3) = (-12)(2x) - (-12)(3) = -24x - (-36) = -24x + 36 = 36 -  24x

3) (10 - 2x)9 = (9)(10) - (9)(2x) = 90 - 18x

4) (-5)(11x - 2) = (-5)(11x) - (-5)(2) = -55x - (-10) = -55x + 10 = 10 - 55x

5) (1 - 9x)(-10) = (-10)(1) - (-10)(9x) = -10 - (-90x) = -10 + 90x = 90x - 10

6) (-6)(x + 8) = (-6)(x) + (-6)(8) = -6x + (-48) = -6x - 48

7) (-4 + 3x)(-8) = (-8)(-4) + (-8)(3x) = 32 + (-24x) = 32 - 24x

8) (-5)(1 - 11x) = (-5)(1) - (-5)(11x) = -5 - (-55x) = -5 + 55x = 55x -5

9) (-12x + 14)(-5) = (-5)(-12x) + (-5)(14) = 60x + (-70) = 60x - 70

Step-by-step explanation:

The distributive property is a(b + c) = ab + ac

8 0
2 years ago
Which of the following points satisfies the inequality y>1/3x-2 which side should be shaded
garik1379 [7]

Answer: Hope this helps <3

Step-by-step explanation:

4 0
3 years ago
(10 points) Consider the initial value problem y′+3y=9t,y(0)=7. Take the Laplace transform of both sides of the given differenti
Rashid [163]

Answer:

The solution

Y (s) = 9( -1 +3 t + e^{-3 t} ) + 7 e ^{-3 t}

Step-by-step explanation:

<u><em>Explanation</em></u>:-

Consider the initial value problem y′+3 y=9 t,y(0)=7

<em>Step(i)</em>:-

Given differential problem

                           y′+3 y=9 t

<em>Take the Laplace transform of both sides of the differential equation</em>

                L( y′+3 y) = L(9 t)

 <em>Using Formula Transform of derivatives</em>

<em>                 L(y¹(t)) = s y⁻(s)-y(0)</em>

  <em>  By using Laplace transform formula</em>

<em>               </em>L(t) = \frac{1}{S^{2} }<em> </em>

<em>Step(ii):-</em>

Given

             L( y′(t)) + 3 L (y(t)) = 9 L( t)

            s y^{-} (s) - y(0) +  3y^{-}(s) = \frac{9}{s^{2} }

            s y^{-} (s) - 7 +  3y^{-}(s) = \frac{9}{s^{2} }

Taking common y⁻(s) and simplification, we get

             ( s +  3)y^{-}(s) = \frac{9}{s^{2} }+7

             y^{-}(s) = \frac{9}{s^{2} (s+3}+\frac{7}{s+3}

<em>Step(iii</em>):-

<em>By using partial fractions , we get</em>

\frac{9}{s^{2} (s+3} = \frac{A}{s} + \frac{B}{s^{2} } + \frac{C}{s+3}

  \frac{9}{s^{2} (s+3} =  \frac{As(s+3)+B(s+3)+Cs^{2} }{s^{2} (s+3)}

 On simplification we get

  9 = A s(s+3) +B(s+3) +C(s²) ...(i)

 Put s =0 in equation(i)

   9 = B(0+3)

 <em>  B = 9/3 = 3</em>

  Put s = -3 in equation(i)

  9 = C(-3)²

  <em>C = 1</em>

 Given Equation  9 = A s(s+3) +B(s+3) +C(s²) ...(i)

Comparing 'S²' coefficient on both sides, we get

  9 = A s²+3 A s +B(s)+3 B +C(s²)

 <em> 0 = A + C</em>

<em>put C=1 , becomes A = -1</em>

\frac{9}{s^{2} (s+3} = \frac{-1}{s} + \frac{3}{s^{2} } + \frac{1}{s+3}

<u><em>Step(iv):-</em></u>

y^{-}(s) = \frac{9}{s^{2} (s+3}+\frac{7}{s+3}

y^{-}(s)  =9( \frac{-1}{s} + \frac{3}{s^{2} } + \frac{1}{s+3}) + \frac{7}{s+3}

Applying inverse Laplace transform on both sides

L^{-1} (y^{-}(s) ) =L^{-1} (9( \frac{-1}{s}) + L^{-1} (\frac{3}{s^{2} }) + L^{-1} (\frac{1}{s+3}) )+ L^{-1} (\frac{7}{s+3})

<em>By using inverse Laplace transform</em>

<em></em>L^{-1} (\frac{1}{s} ) =1<em></em>

L^{-1} (\frac{1}{s^{2} } ) = \frac{t}{1!}

L^{-1} (\frac{1}{s+a} ) =e^{-at}

<u><em>Final answer</em></u>:-

<em>Now the solution , we get</em>

Y (s) = 9( -1 +3 t + e^{-3 t} ) + 7 e ^{-3t}

           

           

5 0
3 years ago
Please I need the polynomial for this problem, if you don’t know then don’t answer! Wrong answers will be reported
babymother [125]

Answer:

Area = (36π - 12πx + x²π) mm²

Step-by-step explanation:

Given that,

radius of lense = 6mm

Length from outer layer of pupil to lense = x mm

Radius of pupil = 6 - x mm

<h3>Formula to calculate area of pupil</h3><h3> Area = π r²</h3>

<em> where r is radius of pupil</em>

Area = π (6 -x)²

Area = π (6² -2(6)(x) + x²)

Area = π (36 -12x +x²)

Area = (36π - 12πx + x²π) mm²

So, the polynomial in standard form that represent the area of pupil in terms of π =  (36π - 12πx + x²π) mm²

5 0
3 years ago
What is the volume of a rectangular prism with a length of 2.5 cm, a width of 3.1 cm and a height of 1.2 cm?
Svetradugi [14.3K]
The answer is D- 9.3cm^3
7 0
3 years ago
Other questions:
  • Help ?<br> Btw update i got a 45/60 on my unit test :3 <br> OOf I need more practice in math....
    9·1 answer
  • Please, help! Pretty urgent!
    13·1 answer
  • an electrician charges a fee of 80$to make a call he also charges 50$per hour f labor write an equation that you could use to fi
    9·1 answer
  • You spin the spinner twice. What is the probability of landing on a 5 and then landing on a number less than 8?
    8·2 answers
  • I don't get it, how do I do it?​
    15·1 answer
  • Evaluate the expression 8n for n = 1 5/12
    9·1 answer
  • Like that ???<br><br><br><br> Xxxxxxxxxx
    8·2 answers
  • ∠A and ∠B\angle B∠B are supplementary angles. If m∠A=(8x−27)∘\angle A=(8x-27)^{\circ}∠A=(8x−27)∘ and m∠B=(4x+3)∘\angle B=(4x+3)^
    10·2 answers
  • The spinner is divided into a equal sections which two events have the same probability
    10·1 answer
  • arshad's father bought x sweets .(x-4)were eaten by children and 20 were left.how many sweets did his father bring
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!