1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
anygoal [31]
2 years ago
9

(10 points) Consider the initial value problem y′+3y=9t,y(0)=7. Take the Laplace transform of both sides of the given differenti

al equation to create the corresponding algebraic equation. Denote the Laplace transform of y(t) by Y(s). Do not move any terms from one side of the equation to the other (until you get to part (b) below). = help (formulas) Solve your equation for Y(s). Y(s)=L{y(t)}=
Mathematics
1 answer:
Rashid [163]2 years ago
5 0

Answer:

The solution

Y (s) = 9( -1 +3 t + e^{-3 t} ) + 7 e ^{-3 t}

Step-by-step explanation:

<u><em>Explanation</em></u>:-

Consider the initial value problem y′+3 y=9 t,y(0)=7

<em>Step(i)</em>:-

Given differential problem

                           y′+3 y=9 t

<em>Take the Laplace transform of both sides of the differential equation</em>

                L( y′+3 y) = L(9 t)

 <em>Using Formula Transform of derivatives</em>

<em>                 L(y¹(t)) = s y⁻(s)-y(0)</em>

  <em>  By using Laplace transform formula</em>

<em>               </em>L(t) = \frac{1}{S^{2} }<em> </em>

<em>Step(ii):-</em>

Given

             L( y′(t)) + 3 L (y(t)) = 9 L( t)

            s y^{-} (s) - y(0) +  3y^{-}(s) = \frac{9}{s^{2} }

            s y^{-} (s) - 7 +  3y^{-}(s) = \frac{9}{s^{2} }

Taking common y⁻(s) and simplification, we get

             ( s +  3)y^{-}(s) = \frac{9}{s^{2} }+7

             y^{-}(s) = \frac{9}{s^{2} (s+3}+\frac{7}{s+3}

<em>Step(iii</em>):-

<em>By using partial fractions , we get</em>

\frac{9}{s^{2} (s+3} = \frac{A}{s} + \frac{B}{s^{2} } + \frac{C}{s+3}

  \frac{9}{s^{2} (s+3} =  \frac{As(s+3)+B(s+3)+Cs^{2} }{s^{2} (s+3)}

 On simplification we get

  9 = A s(s+3) +B(s+3) +C(s²) ...(i)

 Put s =0 in equation(i)

   9 = B(0+3)

 <em>  B = 9/3 = 3</em>

  Put s = -3 in equation(i)

  9 = C(-3)²

  <em>C = 1</em>

 Given Equation  9 = A s(s+3) +B(s+3) +C(s²) ...(i)

Comparing 'S²' coefficient on both sides, we get

  9 = A s²+3 A s +B(s)+3 B +C(s²)

 <em> 0 = A + C</em>

<em>put C=1 , becomes A = -1</em>

\frac{9}{s^{2} (s+3} = \frac{-1}{s} + \frac{3}{s^{2} } + \frac{1}{s+3}

<u><em>Step(iv):-</em></u>

y^{-}(s) = \frac{9}{s^{2} (s+3}+\frac{7}{s+3}

y^{-}(s)  =9( \frac{-1}{s} + \frac{3}{s^{2} } + \frac{1}{s+3}) + \frac{7}{s+3}

Applying inverse Laplace transform on both sides

L^{-1} (y^{-}(s) ) =L^{-1} (9( \frac{-1}{s}) + L^{-1} (\frac{3}{s^{2} }) + L^{-1} (\frac{1}{s+3}) )+ L^{-1} (\frac{7}{s+3})

<em>By using inverse Laplace transform</em>

<em></em>L^{-1} (\frac{1}{s} ) =1<em></em>

L^{-1} (\frac{1}{s^{2} } ) = \frac{t}{1!}

L^{-1} (\frac{1}{s+a} ) =e^{-at}

<u><em>Final answer</em></u>:-

<em>Now the solution , we get</em>

Y (s) = 9( -1 +3 t + e^{-3 t} ) + 7 e ^{-3t}

           

           

You might be interested in
What is 7179.086667 rounded to the nearest hundredth?
professor190 [17]

Answer:

I'm pretty sure it's 7179.1

Step-by-step explanation:

7179.1

3 0
2 years ago
Please can someone help me with this question?
zhannawk [14.2K]

Answer:

a = 16 π cm²      Exact answer

a = 50.24 cm²       Decimal approximation

Step-by-step explanation:

Radius of the circle

16/2 = 8

Area of the circle

a = πr²

a = π4²

a = 16 π cm²      Exact answer

a = 16 * 3.14

a = 50.24 cm²       Decimal approximation

7 0
2 years ago
A family of 8 goes to the amusement park. Each ride at the park costs 1 ticket per person. If they all go on every ride together
Alexxx [7]

Answer: A. 42 tickets

Step-by-step explanation: 8, 16, 24, 32, 40, 48

8 0
2 years ago
Read 2 more answers
Find (a) the slope of the curve at the given point P, and (b) an equation of the tangent line at P: y = 9x^2 + 5 ; P (2,41)
Flauer [41]

Answer:

(a) 36

(b) y = 36x-31

Step-by-step explanation:

(a) dy/dx = 18x

slope of tangent at (2, 41) = 18(2)

= 36

(b) using y-y1 = m(x-x1)

y-41 = 36(x-2)

y = 36x-31

6 0
3 years ago
When is it helpful to estimate quotients?
pantera1 [17]
It is helpful to estimate quotients when the number is very big.
3 0
3 years ago
Other questions:
  • Andrew wants to know how many 3/16 pound servings are in a bag containing 7/8 pound of granola.
    15·2 answers
  • calculeaza lungimea segmentului ab in fiecare dintre cazuri:A(1,5);B(4,5);A(2,-5),B(2,7);A(3,1)B(-1,4);A(-2,-5)B(3,7);A(5,4);B(-
    6·1 answer
  • Solve for the variable. 12.5 = y - 1.25
    11·2 answers
  • What is the order from least to greatest
    9·1 answer
  • 10. Amelia is making friendship bracelets for a charity event. She wants to bring at least 623 bracelets to the (2 points)
    12·1 answer
  • A(n) in the money supply will cause interest rates to decrease, which, in
    12·1 answer
  • Solve the system. 2x + y = 3 −2y = 14 − 6x Write each equation in slope-intercept form.
    6·2 answers
  • What values of a and b make the equation true?
    13·1 answer
  • Median of 3 7 2 4 7 5 7 1 8 8
    8·2 answers
  • Of the 300 fifth graders at Benson Elementary School, 40% signed up for an after-school activity. How many students signed up fo
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!