<span>Ni = 5
The Rydberg formula for hydrogen is
1/w = R(1/a^2 - 1/b^2)
where
w = wavelength in vacuum
R = Rydberg constant 1.0973731568508x10^7 1/m
a,b = integers greater than or equal to 1 and a < b
Now we need to select the value for a.
a = 1 will converge towards 91.13 nm
a = 2 converges towards 364.51 nm
a = 3 converges towards 820.14 nm
...
Because of this, we will assume a = 1 for this problem since it converges closest to the wavelength given.
Substitute known values
1/w = R(1/a^2 - 1/b^2)
1/9.504x10^-8 = 1.0973731568508x10^7(1/1^2 - 1/b^2)
10521885.52 = 1.0973731568508x10^7(1/1 - 1/b^2)
0.958824759 = 1 - 1/b^2
-0.041175241 = -1/b^2
0.041175241 = 1/b^2
24.28643927 = b^2
4.928127359 = b
So Ni = 5.</span>
This would be animalia (animal cells)!
<span>Homeostasis is the ability to maintain a constant internal environment in response to environmental changes</span>
39
Reproductive cells are haploid (have 1/2 the chromosomes), whereas somatic/body cells are diploid (have the full set of chromosomes)
This makes sense if you think about it. Using the example from the question, every dog has 78 chromosomes. This includes two of each (there are two chromosome 1's, two chromosome 2's, etc. This is visible in the karyotype attached). One set of these chromosomes were inherited from the mother, and one set from the father. Each parent contributed 39 chromosomes (one chromosome 1, one chromosome 2, etc.). If the dog in the question were to have 78 chromosomes in its sperm cells, it would contribute two sets to its offspring. When combined with the chromosomes in the egg cell, the offspring would end up with extra chromosomes. Therefore, both the sperm and the egg cells will have 39 chromosomes, one of each. When combined, they will produce offspring with 78 chromosomes, the proper number.
Actually a living thing is not a system. Every part of our body, like our lungs brain or heart, can be seen as a separate system. Therefore we are giant arrays of systems working together to keep you alive