Answer:
How are we supposed to know .???
we can only see half of the problem
Step-by-step explanation:
Explanation:
Conversion of a quadratic equation from standard form to vertex form is done by completing the square method.
Assume the quadratic equation to be
where x is the variable.
Completing the square method is as follows:
- send the constant term to other side of equal

- divide the whole equation be coefficient of
, this will give 
- add
to both side of equality 
- Make one fraction on the right side and compress the expression on the left side

- rearrange the terms will give the vertex form of standard quadratic equation

Follow the above procedure will give the vertex form.
(NOTE : you must know that
. Use this equation in transforming the equation from step 3 to step 4)
We want to see how many solutions has an equation given some restrictions on the vectors of the equation.
We have 3 vectors in R2.
v₁, v₂, and v₃.
Where we know that v₁ and v₂ are parallel. And two vectors are parallel if one is a scalar times the other.
Then we can write:
v₂ = c*v₁
Where c is a real number.
Then our system:
x*v₁ + y*v₂ = v₃
Can be rewriten to:
x*v₁ + y*c*v₁ = v₃
(x + y*c)*v₁ = v₃
Assuming x, y, and c are real numbers, this only has a solution if v₁ is also parallel to v₃, because as you can see, the equation says that v₃ is a scallar times v₁.
Geometrically, this means that if we sum two parallel vectors, we will get a vector that is parallel to the two that we added.
If you want to learn more, you can read:
brainly.com/question/13322477