<span>Penile shaft
</span>During erection, blood<span> flows into the spaces, causing distention and elevation of the penis. The amount of blood entering the penis can be increased by physical or psychological stimulation. As blood enters, there is a temporary reduction in the rate and volume of blood leaving the penis. The arteries carrying blood to the penis dilate; this, in turn, causes tissue expansion. The veins leading from the penis have funnel-shaped valves that reduce the outflow of blood. As the erectile tissue begins to enlarge, the additional pressure causes the veins to be squeezed against the surrounding fibrous tissue, and this further diminishes the outflow of blood. Essentially, blood becomes temporarily trapped in the organ.</span>
Answer:
A
Explanation:
It allows the cell to control what materials enter and leave.
Answer:
Eosinophils
Explanation:
These are type of White blood cells W.B.C ,present almost 2% of white cells . About twice the size of red blood cells , Nucleus is bi lobed . They are often used for parasite attack , Inactivate inflammation and production of substances .
Answer: B. The stream will have fewer plants growing
Explanation:
Answer: The Heart
Explanation:
The blood circulatory system (cardiovascular system) delivers nutrients and oxygen to all cells in the body. It consists of the heart and the blood vessels running through the entire body. The arteries carry blood away from the heart; the veins carry it back to the heart. The system of blood vessels resembles a tree: The “trunk” – the main artery (aorta) – branches into large arteries, which lead to smaller and smaller vessels. The smallest arteries end in a network of tiny vessels known as the capillary network.
There are two types of blood circulatory system in the human body, which are connected: The systemic circulation provides organs, tissues and cells with blood so that they get oxygen and other vital substances. The pulmonary circulation is where the fresh oxygen we breathe in enters the blood. At the same time, carbon dioxide is released from the blood.
Blood circulation starts when the heart relaxes between two heartbeats: The blood flows from both atria (the upper two chambers of the heart) into the ventricles (the lower two chambers), which then expand. The following phase is called the ejection period, which is when both ventricles pump the blood into the large arteries.
In the systemic circulation, the left ventricle pumps oxygen-rich blood into the main artery (aorta). The blood travels from the main artery to larger and smaller arteries and into the capillary network. There the blood drops off oxygen, nutrients and other important substances and picks up carbon dioxide and waste products. The blood, which is now low in oxygen, is collected in veins and travels to the right atrium and into the right ventricle.
This is where pulmonary circulation begins: The right ventricle pumps low-oxygen blood into the pulmonary artery, which branches off into smaller and smaller arteries and capillaries. The capillaries form a fine network around the pulmonary vesicles (grape-like air sacs at the end of the airways). This is where carbon dioxide is released from the blood into the air inside the pulmonary vesicles, and fresh oxygen enters the bloodstream. When we breathe out, carbon dioxide leaves our body. Oxygen-rich blood travels through the pulmonary veins and the left atrium into the left ventricle. The next heartbeat starts a new cycle of systemic circulation. Below is an attachment of a diagram that explains the connection between pulmonary and systemic circulation from google.