1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alexgriva [62]
3 years ago
13

What value of x is in the solution set of 9(2x+1)<9x-18

Mathematics
1 answer:
allsm [11]3 years ago
6 0
18x + 9 < 9x - 18

9x < -27

<span>x < -3

</span><span>If I managed to help you, please make sure to mark my answer as the "Brainliest" answer. Thanks! :)</span>
You might be interested in
For what values of $x$ is it true that $x^2 - 5x - 4 \le 10$? Express your answer in interval notation.
dybincka [34]

Answer:

  x ∈ [-2, 7]

Step-by-step explanation:

The given equation ...

  x^2 -5x -4 ≤ 10

can be rewritten as ...

  x^2 -5x -14 ≤ 0

and factored as ...

  (x +2)(x -7) ≤ 0

Clearly, the "or equal to" condition will be met when x=-2 and x=7. For values of x between these numbers, one factor is negative and the other is positive. Hence the product will be negative. So, numbers in that interval are the solution set.

  x ∈ [-2, 7]

5 0
3 years ago
The blue dot is at what value on the number line?
Ksenya-84 [330]

Answer:

17.

Step-by-step explanation:

one dash is equal to 2. so just go by twos

4 0
2 years ago
Suppose there are 4 defective batteries in a drawer with 10 batteries in it. A sample of 3 is taken at random without replacemen
SSSSS [86.1K]

Answer:

a.) 0.5

b.) 0.66

c.) 0.83

Step-by-step explanation:

As given,

Total Number of Batteries in the drawer = 10

Total Number of defective Batteries in the drawer = 4

⇒Total Number of non - defective Batteries in the drawer = 10 - 4 = 6

Now,

As, a sample of 3 is taken at random without replacement.

a.)

Getting exactly one defective battery means -

1 - from defective battery

2 - from non-defective battery

So,

Getting exactly 1 defective battery = ⁴C₁ × ⁶C₂ =  \frac{4!}{1! (4 - 1 )!} × \frac{6!}{2! (6 - 2 )!}

                                                                            = \frac{4!}{(3)!} × \frac{6!}{2! (4)!}

                                                                            = \frac{4.3!}{(3)!} × \frac{6.5.4!}{2! (4)!}

                                                                            = 4 × \frac{6.5}{2.1! }

                                                                            = 4 × 15 = 60

Total Number of possibility = ¹⁰C₃ = \frac{10!}{3! (10-3)!}

                                                        = \frac{10!}{3! (7)!}

                                                        = \frac{10.9.8.7!}{3! (7)!}

                                                        = \frac{10.9.8}{3.2.1!}

                                                        = 120

So, probability = \frac{60}{120} = \frac{1}{2} = 0.5

b.)

at most one defective battery :

⇒either the defective battery is 1 or 0

If the defective battery is 1 , then 2 non defective

Possibility  = ⁴C₁ × ⁶C₂ = 60

If the defective battery is 0 , then 3 non defective

Possibility   = ⁴C₀ × ⁶C₃

                   =  \frac{4!}{0! (4 - 0)!} × \frac{6!}{3! (6 - 3)!}

                   = \frac{4!}{(4)!} × \frac{6!}{3! (3)!}

                   = 1 × \frac{6.5.4.3!}{3.2.1! (3)!}

                   = 1× \frac{6.5.4}{3.2.1! }

                   = 1 × 20 = 20

getting at most 1 defective battery = 60 + 20 = 80

Probability = \frac{80}{120} = \frac{8}{12} = 0.66

c.)

at least one defective battery :

⇒either the defective battery is 1 or 2 or 3

If the defective battery is 1 , then 2 non defective

Possibility  = ⁴C₁ × ⁶C₂ = 60

If the defective battery is 2 , then 1 non defective

Possibility   = ⁴C₂ × ⁶C₁

                   =  \frac{4!}{2! (4 - 2)!} × \frac{6!}{1! (6 - 1)!}

                   = \frac{4!}{2! (2)!} × \frac{6!}{1! (5)!}

                   = \frac{4.3.2!}{2! (2)!} × \frac{6.5!}{1! (5)!}

                   = \frac{4.3}{2.1!} × \frac{6}{1}

                   = 6 × 6 = 36

If the defective battery is 3 , then 0 non defective

Possibility   = ⁴C₃ × ⁶C₀

                   =  \frac{4!}{3! (4 - 3)!} × \frac{6!}{0! (6 - 0)!}

                   = \frac{4!}{3! (1)!} × \frac{6!}{(6)!}

                   = \frac{4.3!}{3!} × 1

                   = 4×1 = 4

getting at most 1 defective battery = 60 + 36 + 4 = 100

Probability = \frac{100}{120} = \frac{10}{12} = 0.83

3 0
2 years ago
Which expression represents the series 1+5+25+125+625
tankabanditka [31]
a_n=5^n
where n starts at 0.

a_n=5^{(n-1)}
where n starts at 1.
7 0
3 years ago
What is -4√12+√75 in the simplest radical form?
nekit [7.7K]

Answer: -3\sqrt{3}

Step-by-step explanation:

-4\sqrt{12} + \sqrt{75}

\sqrt{12} can be written as \sqrt{4} x \sqrt{3}

which is the same as 2\sqrt{3}

Also , \sqrt{75} can be written as \sqrt{25} x\sqrt{3} , which is the same as 5\sqrt{3}

Substituting into the main question , we have

-4 (2\sqrt{3} ) + 5\sqrt{3}

= -8\sqrt{3} + 5\sqrt{3}

= -3\sqrt{3}

3 0
3 years ago
Other questions:
  • The table below shows the relationship between the number of teaspoons of baking powder in a mix and the height of fudge brownie
    10·2 answers
  • How to solve cube roots
    6·1 answer
  • I don't get V=(4/3)pie r spuared
    9·1 answer
  • <img src="https://tex.z-dn.net/?f=4%5E%7B3%2F4%7D%20%2A%202%5E%7Bx%7D%20%3D16%5E%7B2%2F5%7D" id="TexFormula1" title="4^{3/4} * 2
    9·2 answers
  • PLEASE HURRY!!!!!<br><br><br> What is the turning point of the graph of f(x) = |x – 4| ?
    15·1 answer
  • Write and equation in which the quadratic expression 2x^2 -2x -12 equals 0. Show the expression in factored form and explain wha
    6·1 answer
  • Hello free plonts have a good day
    7·2 answers
  • Need this to solve these two questions please
    15·1 answer
  • 9) Solve<br> 2y + 4 &gt; 24
    10·2 answers
  • Simplify the expression by combining like terms<br>7m+2n-3m+8n-4m​
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!