Answer:
m(∠C) = 18°
Step-by-step explanation:
From the picture attached,
m(arc BD) = 20°
m(arc DE) = 104°
Measure of the angle between secant and the tangent drawn from a point outside the circle is half the difference of the measures of intercepted arcs.
m(∠C) = ![\frac{1}{2}[\text{arc(EA)}-\text{arc(BD)}]](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%5B%5Ctext%7Barc%28EA%29%7D-%5Ctext%7Barc%28BD%29%7D%5D)
Since, AB is a diameter,
m(arc BD) + m(arc DE) + m(arc EA) = 180°
20° + 104° + m(arc EA) = 180°
124° + m(arc EA) = 180°
m(arc EA) = 56°
Therefore, m(∠C) = 
m(∠C) = 18°
Step-by-step explanation:
the answer is lbs i think
We have been given a graph of function g(x) which is a transformation of the function 
Now we have to find the equation of g(x)
Usually transformation involves shifting or stretching so we can use the graph to identify the transformation.
First you should check the graph of 
You will notice that it is always above x-axis (equation is x=0). Because x-axis acts as horizontal asymptote.
Now the given graph has asymptote at x=-2
which is just 2 unit down from the original asymptote x=0
so that means we need shift f(x), 2 unit down hence we get:

but that will disturb the y-intercept (0,1)
if we multiply
by 3 again then the y-intercept will remain (0,1)
Hence final equation for g(x) will be:

70 degree angle for T,R,Q and T,R,S is 140 degree