Answer:
Arc length s = 15.3 inches
Step-by-step explanation:
We know that length of an arc that subtends an angle θ radians at the center is given by

where
r is the radius of the circle
θ is the angle subtended in radians
Thus applying values we get 
thus s = 15.3 inches
Answer:
2nd option
Step-by-step explanation:
Substitute the values of x from the domain into f(x) for range
f(2) = 2³ + 1 = 8 + 1 = 9
f(3) = 3³ + 1 = 27 + 1 = 28
f(4) = 4³ + 1 = 64 + 1 = 65
range is {9, 28, 65 }
Answer:
1.) 48
2.) 65
3.) 36
Step-by-step explanation:
1.) If the equation is 6(x-4) and x = 12, then all we have to do is plug in the value of x. When we plug in, all we do is substitute 12 for x because they mentioned in the question that x = 12. So, we end up getting 6(12 - 4). After solving this, we get 48.
2.) This problem is a lot like the last problem. All we need to do is substitute /plug in the values of x and y into the equation, to get 4(4^2) - 35/7 - (8 + 14). After solving, we get 65.
3.) . This problem, once again, is also a lot like the last problems. We need to substitute the value of x into the equation 8x+12. Since we know from the problem that x is 3, all we have to do is 8 * 3 + 12.
We have an isosceles triangle;
A=opposite angle side a.
B=opposite angle side b.
C=opposite angle side c.
A=B
Method 1:
We can divide the isosceles triangle in two right triangles,
hypotenuse=7
side=9/2=4.5
B=A=arccossine (4.5/7)=49.994799...º≈50º
C/2=90º-50º=40º ⇒ C=2*40º=80º
Answer:
a=7; A=50º
b=7; B=50º
<span>c=9; C=80º
Method 2:
Law of cosines:
a²=b²+c²-2bcCosA ⇒CosA=(a²-b²-c²)/(-2bc)
CosA=(49-49-81) / (-126)=0.642857
A=arco cos (81/126)≈50º
B=A=50º
A+B+C=180º
50º+50º+C=180º
C=180º-100º
C=80º
Answer:
</span>a=7; A=50º
b=7; B=50º
<span>c=9; C=80º</span>
Answer:
its option D because the lines are not even close to crossing.
Step-by-step explanation:
hope this helps :)