Answer:
A
Explanation:
Location b is warmer meaning its closer to the equator and i got it write
Answer:
85.6 g
Explanation:
Step 1: Write the balanced combustion equation
C₃H₈ + 5 O₂ ⇒ 3 CO₂ + 4 H₂O
Step 2: Calculate the moles corresponding to 140 g of H₂O
The molar mass of H₂O is 18.02 g/mol.
140 g × 1 mol/18.02 g = 7.77 mol
Step 3: Calculate the moles of C₃H₈ needed to produce 7.77 moles of H₂O
The molar ratio of C₃H₈ to H₂O is 1:4. The moles of C₃H₈ needed are 1/4 × 7.77 mol = 1.94 mol.
Step 4: Calculate the mass corresponding to 1.94 moles of C₃H₈
The molar mass of C₃H₈ is 44.10 g/mol.
1.94 mol × 44.10 g/mol = 85.6 g
Answer:
Attraction between molecules of methane in liquid state is primarily due to "London dispersion force".
Explanation:
Methane is a non-polar and aprotic molecule. Hence there is no dipole moment in methane as well as no chance of hydrogen bonding formation by methane.
We know that all molecules contain electrons. Therefore transient dipole arises in every molecule due to revolution of electrons around nucleus in a non-circular orbit. Hence an weak intermolecular attraction force is always present in every molecule as a result of this which is termed as "London dispersion force".
So, attraction between molecules of methane in liquid state is primarily due to "London dispersion force".
The answer is solution because it cannot be separated or colliod homogenous mixture which has all the components in the same phase. emulsions or what ever idk your answer but that my best answer :3