<span>If you give it a good search, the most used answer would probably be as follows,
</span><span>In 1914 Henry Moseley found a relationship between an element's X-ray wavelength and its atomic number (Z), and therefore rearranged the table by nuclear charge / atomic number rather than atomic weight. Before this discovery, atomic numbers were just sequential numbers based on an element's atomic weight. Moseley's discovery showed that atomic numbers had an experimentally measurable basis.
</span>
Hope this helps!
To calculate the number of atoms of Cr, we first find the number of moles per unit of cubic centimeter of Cr. Then, use avogadros number for the number of atoms. Calculations are as follows:
1 cm^3 (7.15 g/cm^3) (1 mol / 51.996 g Cr) = 0.14 mol Cr
0.14 mol Cr ( 6.022 x 10^23 atoms Cr / 1 mol Cr ) = 8.28 x 10^22 atoms Cr
Answer:
1
Explanation:
Lz=projection of L vector on the direction of the magnetic field
l=-1: theta=135 deg
l=0: theta=90 deg
l=1: theta=45 deg
Answer:
Q = 30355.2 J
Explanation:
Given data:
Mass of ice = 120 g
Initial temperature = -5°C
Final temperature = 115°C
Energy required = ?
Solution:
Specific heat capacity of ice is = 2.108 j/g.°C
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
Q = m.c. ΔT
ΔT = T2 -T1
ΔT = 115 - (-5°C)
ΔT = 120 °C
Q = 120 g × 2.108 j/g.°C × 120 °C
Q = 30355.2 J
The largest advantage of sodium-ion batteries is the high natural abundance of sodium. This could make commercial production of sodium-ion batteries less expensive than lithium-ion batteries. As of 2020, sodium ion batteries have very little share of the battery market.