Answer:
The fifth degree Taylor polynomial of g(x) is increasing around x=-1
Step-by-step explanation:
Yes, you can do the derivative of the fifth degree Taylor polynomial, but notice that its derivative evaluated at x =-1 will give zero for all its terms except for the one of first order, so the calculation becomes simple:

and when you do its derivative:
1) the constant term renders zero,
2) the following term (term of order 1, the linear term) renders:
since the derivative of (x+1) is one,
3) all other terms will keep at least one factor (x+1) in their derivative, and this evaluated at x = -1 will render zero
Therefore, the only term that would give you something different from zero once evaluated at x = -1 is the derivative of that linear term. and that only non-zero term is:
as per the information given. Therefore, the function has derivative larger than zero, then it is increasing in the vicinity of x = -1
2/5 lbs walnuts > 1/3 lbs almonds
Hope this helped ;)
Answer:
Step-by-step explanation:
The equation of the line is written in the slope-intercept form, which is: y = mx + b, where m represents the slope and b represents the y-intercept. In our equation, y = 6x + 2, we see that the slope of the line is 6.
Hope this helps :)
3 and 3 1/5 because the median is always in the middle