Find the vertex: -4x^2 + 16x - 7
Vertex = ( x, f(x)).
x = -b/2a
x = -16/2(-4)
x = -16/-8
x = 2
f(x) = -4x^2 + 16x - 7
Let x = 2
f(2) = -4(2)^2 + 16(2) - 7
f(2) = -4(4) + 32 - 7
f(2) = -16 + 32 - 7
f(2) = 16 - 7
f(2) = 9
Vertex = (2, 9)
m∠AOC = 108°
m∠AOC = 3m∠AOB
⇒m∠AOB = (m∠AOC) / 3 = 108 / 3 = 36°
Answer:
2 sqrt(2x-1)
Step-by-step explanation:
f(x) = sqrt( x+9)
g(x) = 8x-13
f(g(x))
place the function g(x) in for x in f(x)
f(g(x)) = sqrt(8x-13+9)
Combine like terms
f(g(x)) = sqrt(8x-4)
Factor out 4
f(g(x)) = sqrt(4*(2x-1)
2 sqrt(2x-1)
To do this problem you use is/of=percent/100
So:
320/750=x/100
cross multiply
32,000=750x
divide both sides by 750
x=42.66 repeating
ANSWER: X=42.66 REPEATING