Answer: No, see explanation below
Step-by-step explanation:
For the relationship between the temperature scales to be proportional, the ratio (the number we get when dividing the given temperature in Celsius by the temperature in Fahrenheit) has to be constant.

In the example, I give, we can see that is not the case. It applies to any value as well, therefore the relationship between the temperature scales is NOT proportional
The answer is d, (-2.5,0.75)
Hello here is a solution :
Call the notebooks x, and the pencils y.
<span>3x + 4y = $8.50 and 5x + 8y = $14.50 </span>
<span>Then just solve as simultaneous equations: </span>
<span>3x + 4y = $8.50 </span>
<span>5x + 8y = $14.50 </span>
<span>5(3x + 4y = 8.5) </span>
<span>3(5x + 8y = 14.5) </span>
<span>15x + 20y = 42.5 </span>
<span>15x + 24y = 43.5 </span>
<span>Think: DASS (Different Add, Similar Subtract). 15x appears in both equations so subtract one equation from the other. Eassier to subtract (15x + 20y = 42.5) from (15x + 24y = 43.5) </span>
<span>(15x + 24y = 43.5) - (15x + 20y = 42.5) = (4y = 1) which means y = 0.25. </span>
<span>Then substitue into equation : </span>
<span>15x + 20y = 42.5 </span>
<span>15x + 5 + 42.5 </span>
<span>15x = 42.5 - 5 = 37.5 </span>
<span>15x = 37.5 </span>
<span>x = 2.5 </span>
<span>15x + 24y = 43.5 </span>
<span>15(2.5) + 24(0.25) </span>
<span>37.5 + 6 = 43.5 </span>
<span>So x (notebooks) are 2.5 ($2.50) each and y (pencils) are 0.25 ($0.25) each.</span>