Answer:

Explanation:
Assume that the distance travelled initially is d.
In order to stop the block you need some external force which is friction.
If we use the law of energy conservation:

a)
Looking at the formula you can see that the mass doesn't affect the distance travelled, as lng as the initial velocity is constant (Which indicates that the force must be higher to push the block to the same speed) therefore the distance is the same.
b) If the velocity is doubled, then the distance travelled is multiplied by 4, because the distance deppends on the square of the velocity.
The mathematical and proportional relationship between mL and
said us that
is equivalent to 1mL.
If the density is considered as the amount of mass per unit volume we will have to

here,
m = mass
V = Volume
Replacing we have that


As
we have that the density in g/mL is,

Answer:
c) lifespan
Explanation:
hope it's helpful for you ☺️