1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mafiozo [28]
3 years ago
10

Which of the following situations calls for a hypothesis test about a population mean?

Mathematics
1 answer:
tigry1 [53]3 years ago
3 0

Answer:

Step-by-step explanation:

Hypothesis test about a population mean is done to evaluate two exclusive statements about a population in order to determine which is best supported by the sample data.

From the situations given, the correct options are

b. A recent study estimated that 20% of all college students in the United States smoke. The head of Health Services at Goodheart University suspects that the proportion of smokers may be lower there. This would require taking a sample and determining the probability of success.

c. A certain prescription allergy medicine is suppose to contain an average of 245 parts per million (ppm) of active ingredient. The manufacturer wants to check whether the mean concentration in a large shipment of pills is 245 ppm or not.

d. A report on the College Board website stated that in 2003 males scored generally higher than females on the SAT exam. An educational researcher wants to check whether this is true in her school district.

You might be interested in
2x-4=10 reverse order algebra
hjlf

Answer:

7

Step-by-step explanation:

2x-4=10

2x=10+4

2x=14

x=14/2

x=7

8 0
3 years ago
I really need it to be sold in imaginary numbers
Yuliya22 [10]
Solving a 5th grade polynomial

We want to find the answer of the following polynomial:

x^5+3x^4+3x^3+19x^2-54x-72=0

We can see that the last term is -72

We want to find all the possible numbers that can divide it. Those are:

{±1, ±2, ±3, ±4, ±6, ±8, ±9, ±12, ±18, ±36, ±72}

We want to factor this polynomial in order to find all the possible x-values. In order to factor it we will have to find some binomials that can divide it using the set of divisors of -72.

We know that if

(x - z) is a divisor of this polynomial then z might be a divisor of the last term -72.

We will verify which is a divisor using synthetic division. If it is a divisor then we can factor using it:

Let's begin with

(x-z) = (x - 1)

We want to divide

\frac{(x^5+3x^4+3x^3+19x^2-54x-72)}{x-1}

Using synthetic division we have that if the remainder is 0 it will be a factor

We can find the remainder by replacing x = z in the polynomial, when it is divided by (x - z). It is to say, that if we want to know if (x -1) is a factor of the polynomial we just need to replace x by 1, and see the result:

If the result is 0 it is a factor

If it is different to 0 it is not a factor

Replacing x = 1

If we replace x = 1, we will have that:

\begin{gathered} x^5+3x^4+3x^3+19x^2-54x-72 \\ \downarrow \\ 1^5+3\cdot1^4+3\cdot1^3+19\cdot1^2-54\cdot1-72 \\ =1+3+3+19-54-72 \\ =-100 \end{gathered}

Then the remainder is not 0, then (x - 1) is not a factor.

Similarly we are going to apply this until we find factors:

(x - z) = (x + 1)

We replace x by -1:

\begin{gathered} x^5+3x^4+3x^3+19x^2-54x-72 \\ \downarrow \\ (-1)^5+3\cdot(-1)^4+3\cdot(-1)^3+19\cdot(-1)^2-54\cdot(-1)-72 \\ =-1+3-3+19+54-72 \\ =0 \end{gathered}

Then, (x + 1) is a factor.

Using synthetic division we have that:

Then:

x^5+3x^4+3x^3+19x^2-54x-72=(x+1)(x^4+2x^3+x^2+18x-72)

Now, we want to factor the 4th grade polynomial.

Let's remember our possibilities:

{±1, ±2, ±3, ±4, ±6, ±8, ±9, ±12, ±18, ±36, ±72}

Since we verified ±1, let's try with ±2 as we did before.

(x - z) = (x - 2)

We want to divide:

\frac{x^4+2x^3+x^2+18x-72}{x-2}

We replace x by z = 2:

\begin{gathered} x^4+2x^3+x^2+18x-72 \\ \downarrow \\ 2^4+2\cdot2^3+2^2+18\cdot2-72 \\ =16+16+4+36-72 \\ =0 \end{gathered}

Then (x - 2) is a factor. Let's do the synthetic division:

Then,

x^4+2x^3+x^2+18x-72=(x-2)(x^3+4x^2+9x+36)

Then, our original polynomial is:

\begin{gathered} x^5+3x^4+3x^3+19x^2-54x-72 \\ =\mleft(x+1\mright)\mleft(x^4+2x^3+x^2+18x-72\mright) \\ =(x-1)(x-2)(x^3+4x^2+9x+36) \end{gathered}

Now, let's prove if (x +2) is a factor, using the new 3th grade polynomial.

(x - z) = (x + 2)

We replace x by z = -2:

\begin{gathered} x^3+4x^2+9x+36 \\ \downarrow \\ (-2)^3+4(-2)^2+9(-2)+36 \\ =-8+16-18+36 \\ =26 \end{gathered}

Since the remainder is not 0, (x +2) is not a factor.

All the possible cases are:

{±1, ±2, ±3, ±4, ±6, ±8, ±9, ±12, ±18, ±36, ±72}

let's prove with +4

(x - z) = (x + 4)

We want to divide:

\frac{x^3+4x^2+9x+36}{x+4}

Let's replace x by z = -4 in order to find the remainder:

\begin{gathered} x^3+4x^2+9x+36 \\ \downarrow \\ (-4)^3+4(-4)^2+9(-4)+36 \\ =-64+64-36+36 \\ =0 \end{gathered}

Then (x + 4) is a factor. Let's do the synthetic division:

Then,

x^3+4x^2+9x+36=(x+4)(x^2+9)

Since

x² + 9 cannot be factor, we have completed our factoring:

\begin{gathered} x^5+3x^4+3x^3+19x^2-54x-72 \\ =(x-1)(x-2)(x^3+4x^2+9x+36) \\ =(x-1)(x-2)(x+4)(x^2+9) \end{gathered}

Now, we have the following expression:

(x-1)(x-2)(x+4)(x^2+9)=0

Then, we have five posibilities:

(x - 1) = 0

or (x - 2) = 0

or (x + 4) = 0

or (x² + 9) = 0

Then, we have five solutions;

x - 1 = 0 → x₁ = 1

x - 2 = 0 → x₂ = 2

x + 4 = 0 → x₃ = -4

x² + 9 = 0 → x² = -9 → x = ±√-9 = ±√9√-1 = ±3i

→ x₄ = 3i

→ x₅ = -3i

<h2><em>Answer- the solutions of the polynomial are: x₁ = 1, x₂ = 2, x₃ = -4, x₄ = 3i and x₅ = -3i</em></h2>

7 0
1 year ago
I am thinking of a number.
Step2247 [10]

Step-by-step explanation:

Let the number Noah is thinking of be x,

=> x - 19 * 4 = 16

=> x - 19 = 16/4

=> x = 16/4 + 19

=> x = 4 + 19

=> x = 23

If my answer helped , please mark me as brainliest,

Thank you

4 0
3 years ago
What is the opposite of 12?<br> NEED HELP FAST
Liono4ka [1.6K]

Answer:

-12

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
Kevin ran 5 miles in 42 minutes. How many miles per hour did Kevin run? Round to the nearest tenth.
strojnjashka [21]
Kevin ran 8 miles rounded to the nearest tenth
4 0
3 years ago
Read 2 more answers
Other questions:
  • I don’t understand this please help
    5·1 answer
  • What is two addends using this number 9,5,18,22,24
    7·1 answer
  • there is 54 g of fruits in a smoothie. If the ratio of strawberry and blueberry in the smoothie is 5:4, how much of each fruit i
    7·1 answer
  • Today, the mailman sorted 57 letters during his first hour of work, 69 letters during his second hour, 81 letters during his thi
    9·1 answer
  • How much change will Bob get for a $ 5.75 purchase if he uses $ 10.00 to pay for it?
    5·1 answer
  • In a class there are x amount of students. z amounts of these students are ( y+1 ) years old. The rest of the students are y yea
    10·1 answer
  • Which expression is equivalent 2(a+4b)+5+7b+6
    14·1 answer
  • What is the range of the relation graphed below?
    14·1 answer
  • Divide.
    13·1 answer
  • A box contains
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!