Answer:
P (X ≤ 4)
Step-by-step explanation:
The binomial probability formula can be used to find the probability of a binomial experiment for a specific number of successes. It <em>does not</em> find the probability for a <em>range</em> of successes, as in this case.
The <em>range</em> "x≤4" means x = 0 <em>or</em> x = 1 <em>or </em>x = 2 <em>or</em> x = 3 <em>or</em> x = 4, so there are five different probability calculations to do.
To to find the total probability, we use the addition rule that states that the probabilities of different events can be added to find the probability for the entire set of events only if the events are <em>Mutually Exclusive</em>. The outcomes of a binomial experiment are mutually exclusive for any value of x between zero and n, as long as n and p don't change, so we're allowed to add the five calculated probabilities together to find the total probability.
The probability that x ≤ 4 can be written as P (X ≤ 4) or as P (X = 0 or X = 1 or X = 2 or X = 3 or X = 4) which means (because of the addition rule) that P(x ≤ 4) = P(x = 0) + P(x = 1) + P (x = 2) + P (x = 3) + P (x = 4)
Therefore, the probability of x<4 successes is P (X ≤ 4)
Answer:
49
Step-by-step explanation:
-11 2/3 x (-4 1/5) =
negative times negative = positive
Change the mixed numerals into fractions.
= 35/3 × 21/5
Multiply the numerators together. Multiply the denominators together.
= (35 × 21)/(3 × 5)
Simplify.
= (7 × 5 × 7 × 3)/(3 × 5)
Divide the numerator and denominator by 3 and by 5.
= 7 × 7
= 49
V≈5321.86
Sine the cylinder volume formula is pi*r^2*h.
*☆*――*☆*――*☆*――*☆*――*☆*――*☆*――*☆*――*☆**☆*――*☆*――*☆*――*☆
Answer: 2.92
I hope this helped!
<!> Brainliest is appreciated! <!>
- Zack Slocum
*☆*――*☆*――*☆*――*☆*――*☆*――*☆*――*☆*――*☆**☆*――*☆*――*☆*――*☆
Answer:

Step-by-step explanation:
Given the initial value problem
subject to y(π) = 1. To solve this we will use the variable separable method.
Step 1: Separate the variables;


The solution to the initial value problem will be;
