Answer:
Option B- 91.44 is the correct Answer.
Step-by-step explanation:
Cesar only has 12 months left before he pays off his credit card completely.
His current balance = $3,750
APR = 17.5%
Now we use the formula :
PV of annuity = ![P=[\frac{1-(1+r)^{-n} }{r}]](https://tex.z-dn.net/?f=P%3D%5B%5Cfrac%7B1-%281%2Br%29%5E%7B-n%7D%20%7D%7Br%7D%5D)
PV = Present Value
P = Periodic payment
r = rate per period
n = number of period
case 1 :
PV of annuity = $3,750
P = ?
r = 17.5% annually =
% monthly
monthly
n = 12 months
Now we put the values in formula
![= 3750 = P[\frac{1-(1+\frac{17.5}{1200})^{-12}}{\frac{17.5}{1200}}]](https://tex.z-dn.net/?f=%3D%203750%20%3D%20P%5B%5Cfrac%7B1-%281%2B%5Cfrac%7B17.5%7D%7B1200%7D%29%5E%7B-12%7D%7D%7B%5Cfrac%7B17.5%7D%7B1200%7D%7D%5D)
⇒ P= ![\frac{3750}{[\frac{1-(1+\frac{17.5}{1200})^{-12} }{\frac{17.5}{1200} }]}](https://tex.z-dn.net/?f=%5Cfrac%7B3750%7D%7B%5B%5Cfrac%7B1-%281%2B%5Cfrac%7B17.5%7D%7B1200%7D%29%5E%7B-12%7D%20%20%7D%7B%5Cfrac%7B17.5%7D%7B1200%7D%20%7D%5D%7D)
⇒ P = 
⇒ P = 
⇒ P = 342.91
Case 2 :
PV of annuity = 3750 + 1000 = 4750
P = ?
r = 17.5% annually =
% monthly =
monthly
n = 12 months
Putting the values in formula
![= 4750 = P[\frac{1-(1+\frac{17.5}{1200})^{-12}}{\frac{17.5}{1200} }]](https://tex.z-dn.net/?f=%3D%204750%20%3D%20P%5B%5Cfrac%7B1-%281%2B%5Cfrac%7B17.5%7D%7B1200%7D%29%5E%7B-12%7D%7D%7B%5Cfrac%7B17.5%7D%7B1200%7D%20%7D%5D)
⇒ P= ![\frac{4750}{[\frac{1-(1+\frac{17.5}{1200})^{-12} }{\frac{17.5}{1200} }]}](https://tex.z-dn.net/?f=%5Cfrac%7B4750%7D%7B%5B%5Cfrac%7B1-%281%2B%5Cfrac%7B17.5%7D%7B1200%7D%29%5E%7B-12%7D%20%20%7D%7B%5Cfrac%7B17.5%7D%7B1200%7D%20%7D%5D%7D)
⇒ P = 
⇒ P = 
⇒ P = 434.35
Cesar's increased monthly payment will be
434.35 - 342.91 = 91.44