Answer:
![\sqrt[4]{\frac{16x^6y^4}{81x^2y^8}}\rightarrow\frac{2x}{3y}\\\sqrt[4]{\frac{81x^2y^{10}}{81x^6y^6}} \rightarrow\frac{3y}{2x}\\\sqrt[3]{\frac{64x^8y^7}{125x^2y^{10}}}\rightarrow\frac{4x^2}{5y}\\\sqrt[5]{\frac{243x^{17}y^{16}}{32x^7y^{21}}}\rightarrow\frac{3x^2}{2y}\\\sqrt[5]{\frac{32x^{12}y^{15}}{243x^7y^{10}}} \rightarrow\frac{2xy}{3}\\\sqrt[4]{\frac{16x^{10}y^{9}}{256x^2y^{17}}}\rightarrow\frac{x}{2y}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B%5Cfrac%7B16x%5E6y%5E4%7D%7B81x%5E2y%5E8%7D%7D%5Crightarrow%5Cfrac%7B2x%7D%7B3y%7D%5C%5C%5Csqrt%5B4%5D%7B%5Cfrac%7B81x%5E2y%5E%7B10%7D%7D%7B81x%5E6y%5E6%7D%7D%20%5Crightarrow%5Cfrac%7B3y%7D%7B2x%7D%5C%5C%5Csqrt%5B3%5D%7B%5Cfrac%7B64x%5E8y%5E7%7D%7B125x%5E2y%5E%7B10%7D%7D%7D%5Crightarrow%5Cfrac%7B4x%5E2%7D%7B5y%7D%5C%5C%5Csqrt%5B5%5D%7B%5Cfrac%7B243x%5E%7B17%7Dy%5E%7B16%7D%7D%7B32x%5E7y%5E%7B21%7D%7D%7D%5Crightarrow%5Cfrac%7B3x%5E2%7D%7B2y%7D%5C%5C%5Csqrt%5B5%5D%7B%5Cfrac%7B32x%5E%7B12%7Dy%5E%7B15%7D%7D%7B243x%5E7y%5E%7B10%7D%7D%7D%20%5Crightarrow%5Cfrac%7B2xy%7D%7B3%7D%5C%5C%5Csqrt%5B4%5D%7B%5Cfrac%7B16x%5E%7B10%7Dy%5E%7B9%7D%7D%7B256x%5E2y%5E%7B17%7D%7D%7D%5Crightarrow%5Cfrac%7Bx%7D%7B2y%7D)
Step-by-step explanation:
![\sqrt[4]{\frac{16x^6y^4}{81x^2y^8}} =\sqrt[4]{\frac{(2^4)(x^{6-2})(y^{4-8})}{(3^4)}} =\sqrt[4]{\frac{2^4x^4y^{-4}}{3^4}} =\frac{2xy^{-1}}{3}=\frac{2x}{3y}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B%5Cfrac%7B16x%5E6y%5E4%7D%7B81x%5E2y%5E8%7D%7D%20%3D%5Csqrt%5B4%5D%7B%5Cfrac%7B%282%5E4%29%28x%5E%7B6-2%7D%29%28y%5E%7B4-8%7D%29%7D%7B%283%5E4%29%7D%7D%20%3D%5Csqrt%5B4%5D%7B%5Cfrac%7B2%5E4x%5E4y%5E%7B-4%7D%7D%7B3%5E4%7D%7D%20%3D%5Cfrac%7B2xy%5E%7B-1%7D%7D%7B3%7D%3D%5Cfrac%7B2x%7D%7B3y%7D)
![\sqrt[4]{\frac{81x^2y^{10}}{81x^6y^6}} =\sqrt[4]{\frac{(3^4)(x^{2-6})(y^{10-6})}{(2^4)}} =\sqrt[4]{\frac{3^4x^{-4}y^{4}}{2^4}} =\frac{3x^{-1}y^1}{3}=\frac{3y}{2x}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B%5Cfrac%7B81x%5E2y%5E%7B10%7D%7D%7B81x%5E6y%5E6%7D%7D%20%3D%5Csqrt%5B4%5D%7B%5Cfrac%7B%283%5E4%29%28x%5E%7B2-6%7D%29%28y%5E%7B10-6%7D%29%7D%7B%282%5E4%29%7D%7D%20%3D%5Csqrt%5B4%5D%7B%5Cfrac%7B3%5E4x%5E%7B-4%7Dy%5E%7B4%7D%7D%7B2%5E4%7D%7D%20%3D%5Cfrac%7B3x%5E%7B-1%7Dy%5E1%7D%7B3%7D%3D%5Cfrac%7B3y%7D%7B2x%7D)
![\sqrt[3]{\frac{64x^8y^7}{125x^2y^{10}}} =\sqrt[3]{\frac{(4^3)(x^{8-2})(y^{7-10})}{(5^3)}} =\sqrt[3]{\frac{4^3x^6y^{-3}}{5^3}} =\frac{4x^2y^{-1}}{5}=\frac{4x^2}{5y}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B%5Cfrac%7B64x%5E8y%5E7%7D%7B125x%5E2y%5E%7B10%7D%7D%7D%20%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B%284%5E3%29%28x%5E%7B8-2%7D%29%28y%5E%7B7-10%7D%29%7D%7B%285%5E3%29%7D%7D%20%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B4%5E3x%5E6y%5E%7B-3%7D%7D%7B5%5E3%7D%7D%20%3D%5Cfrac%7B4x%5E2y%5E%7B-1%7D%7D%7B5%7D%3D%5Cfrac%7B4x%5E2%7D%7B5y%7D)
![\sqrt[5]{\frac{243x^{17}y^{16}}{32x^7y^{21}}} =\sqrt[5]{\frac{(3^5)(x^{17-7})(y^{16-21})}{(2^5)}} =\sqrt[5]{\frac{3^5x^{10}y^{-5}}{2^5}} =\frac{3x^2y^{-1}}{2}=\frac{3x^2}{2y}](https://tex.z-dn.net/?f=%5Csqrt%5B5%5D%7B%5Cfrac%7B243x%5E%7B17%7Dy%5E%7B16%7D%7D%7B32x%5E7y%5E%7B21%7D%7D%7D%20%3D%5Csqrt%5B5%5D%7B%5Cfrac%7B%283%5E5%29%28x%5E%7B17-7%7D%29%28y%5E%7B16-21%7D%29%7D%7B%282%5E5%29%7D%7D%20%3D%5Csqrt%5B5%5D%7B%5Cfrac%7B3%5E5x%5E%7B10%7Dy%5E%7B-5%7D%7D%7B2%5E5%7D%7D%20%3D%5Cfrac%7B3x%5E2y%5E%7B-1%7D%7D%7B2%7D%3D%5Cfrac%7B3x%5E2%7D%7B2y%7D)
![\sqrt[5]{\frac{32x^{12}y^{15}}{243x^7y^{10}}} =\sqrt[5]{\frac{(2^5)(x^{12-7})(y^{15-10})}{(3^5)}} =\sqrt[5]{\frac{2^5x^{5}y^{5}}{3^5}} =\frac{2x^1y^{1}}{3}=\frac{2xy}{3}](https://tex.z-dn.net/?f=%5Csqrt%5B5%5D%7B%5Cfrac%7B32x%5E%7B12%7Dy%5E%7B15%7D%7D%7B243x%5E7y%5E%7B10%7D%7D%7D%20%3D%5Csqrt%5B5%5D%7B%5Cfrac%7B%282%5E5%29%28x%5E%7B12-7%7D%29%28y%5E%7B15-10%7D%29%7D%7B%283%5E5%29%7D%7D%20%3D%5Csqrt%5B5%5D%7B%5Cfrac%7B2%5E5x%5E%7B5%7Dy%5E%7B5%7D%7D%7B3%5E5%7D%7D%20%3D%5Cfrac%7B2x%5E1y%5E%7B1%7D%7D%7B3%7D%3D%5Cfrac%7B2xy%7D%7B3%7D)
![\sqrt[4]{\frac{16x^{10}y^{9}}{256x^2y^{17}}} =\sqrt[4]{\frac{(2^4)(x^{10-2})(y^{9-17})}{(4^4)}} =\sqrt[4]{\frac{2^4x^{8}y^{-8}}{4^4}} =\frac{2x^{1}y^{-1}}{4}=\frac{x}{2y}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B%5Cfrac%7B16x%5E%7B10%7Dy%5E%7B9%7D%7D%7B256x%5E2y%5E%7B17%7D%7D%7D%20%3D%5Csqrt%5B4%5D%7B%5Cfrac%7B%282%5E4%29%28x%5E%7B10-2%7D%29%28y%5E%7B9-17%7D%29%7D%7B%284%5E4%29%7D%7D%20%3D%5Csqrt%5B4%5D%7B%5Cfrac%7B2%5E4x%5E%7B8%7Dy%5E%7B-8%7D%7D%7B4%5E4%7D%7D%20%3D%5Cfrac%7B2x%5E%7B1%7Dy%5E%7B-1%7D%7D%7B4%7D%3D%5Cfrac%7Bx%7D%7B2y%7D)
Thus,
![\sqrt[4]{\frac{16x^6y^4}{81x^2y^8}}\rightarrow\frac{2x}{3y}\\\sqrt[4]{\frac{81x^2y^{10}}{81x^6y^6}} \rightarrow\frac{3y}{2x}\\\sqrt[3]{\frac{64x^8y^7}{125x^2y^{10}}}\rightarrow\frac{4x^2}{5y}\\\sqrt[5]{\frac{243x^{17}y^{16}}{32x^7y^{21}}}\rightarrow\frac{3x^2}{2y}\\\sqrt[5]{\frac{32x^{12}y^{15}}{243x^7y^{10}}} \rightarrow\frac{2xy}{3}\\\sqrt[4]{\frac{16x^{10}y^{9}}{256x^2y^{17}}}\rightarrow\frac{x}{2y}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B%5Cfrac%7B16x%5E6y%5E4%7D%7B81x%5E2y%5E8%7D%7D%5Crightarrow%5Cfrac%7B2x%7D%7B3y%7D%5C%5C%5Csqrt%5B4%5D%7B%5Cfrac%7B81x%5E2y%5E%7B10%7D%7D%7B81x%5E6y%5E6%7D%7D%20%5Crightarrow%5Cfrac%7B3y%7D%7B2x%7D%5C%5C%5Csqrt%5B3%5D%7B%5Cfrac%7B64x%5E8y%5E7%7D%7B125x%5E2y%5E%7B10%7D%7D%7D%5Crightarrow%5Cfrac%7B4x%5E2%7D%7B5y%7D%5C%5C%5Csqrt%5B5%5D%7B%5Cfrac%7B243x%5E%7B17%7Dy%5E%7B16%7D%7D%7B32x%5E7y%5E%7B21%7D%7D%7D%5Crightarrow%5Cfrac%7B3x%5E2%7D%7B2y%7D%5C%5C%5Csqrt%5B5%5D%7B%5Cfrac%7B32x%5E%7B12%7Dy%5E%7B15%7D%7D%7B243x%5E7y%5E%7B10%7D%7D%7D%20%5Crightarrow%5Cfrac%7B2xy%7D%7B3%7D%5C%5C%5Csqrt%5B4%5D%7B%5Cfrac%7B16x%5E%7B10%7Dy%5E%7B9%7D%7D%7B256x%5E2y%5E%7B17%7D%7D%7D%5Crightarrow%5Cfrac%7Bx%7D%7B2y%7D)
Answer: Aproximately 2,525 balloons
Step-by-step explanation:
1. Find the volume of a balloon with the formula given in the problem, where
is the radius (
), then:

2. Convert the volume from m³ to lliters by multiplying it by 1,000:

3. You know that that 1 liter of helium can lift 1 gram and that Ryan weighs 5 stone and 5 pounds. So you must make the following conversions:
1 g=0.0022 lb
From 5 stones to pounds

4. Then Ryan's weigh is:
5lb+70lb=75lb
5. Then, if 1 liter of helium can lift 0.0022 lb, to lift 75 lb (which is the weight of Ryan) they need:

6. Then, to calculate the aproximated number of balloons they need to make him float (which can call
), you must divide the liters of helium needed to lift the weight of Ryan by the volume of a balloon, then the result is:

≈2,525 balloons.
So circumference is the distance around the wheel
that is the part that is actually touching the ground
so therefor the wheele travels 3 inches per rotations
5 rotations per minute
we have to find the distance
3 times (number of roations) times 1 minute=3 times 5 times 1=15
answer is 15 in per miute
I=15
Answer: Infinite Solutions
Step-by-step explanation: Make the top x and y values times -2 to cancel all the variables and numbers out to get 0 = 0 so it would be Infinite Solutions.
And if you multiply by 2 you get the exact same equation.
If I am wrong let me know!
Hope this helps!
Jamal's age is 5 because Tim is 3 years younger which is 2 and add those two together and you get 7 and Wilma is twice his age so 10 and add the others