The correct answer is B)
I hope this helps.
Have a "AWESOME" day! :)
Answer:
Verified below
Step-by-step explanation:
We want to show that (Cos2θ)/(1 + sin2θ) = (cot θ - 1)/(cot θ + 1)
In trigonometric identities;
Cot θ = cos θ/sin θ
Thus;
(cot θ - 1)/(cot θ + 1) gives;
((cos θ/sin θ) - 1)/((cos θ/sin θ) + 1)
Simplifying numerator and denominator gives;
((cos θ - sin θ)/sin θ)/((cos θ + sin θ)/sin θ)
This reduces to;
>> (cos θ - sin θ)/(cos θ + sin θ)
Multiply top and bottom by ((cos θ + sin θ) to get;
>> (cos² θ - sin²θ)/(cos²θ + sin²θ + 2sinθcosθ)
In trigonometric identities, we know that;
cos 2θ = (cos² θ - sin²θ)
cos²θ + sin²θ = 1
sin 2θ = 2sinθcosθ
Thus;
(cos² θ - sin²θ)/(cos²θ + sin²θ + 2sinθcosθ) gives us:
>> cos 2θ/(1 + sin 2θ)
This is equal to the left hand side.
Thus, it is verified.
Answer:
Step-by-step explanation:
8p+3f=10.39
5p+4f=10.51
subtract
3p-f=-0.12
f=3p+0.12
8p+3(3p+0.12)=10.39
17p=10.39-0.36
17p=10.03
p=10.03/17=0.59
f=3×0.59+0.12=1.77+0.12=1.89 $
or 40 p+15f-40p-32f=51.95-84.08
-17f=-32.13
f=1.89 $
Answer:
9x^4 -36
Step-by-step explanation:
see image below:)