The answer is B.
remember to use the reciprocal when dividing with fractions
Aida did not correctly divide by the common factor to get (4+8).
Answer:
h=8
Step-by-step explanation:
the goal is to isolate the variable, get it all by itself. to do that in this problem, we have to move the -7/8 away from the h. we do this by multiplying by the reciprocal (the opposite of the fraction). The reciprocal of -7/8 is 8/-7. So multiply both sides by this and you will get h=8
Answer:
A triangle has side lengths 18, 24, x.
18 + 24 = x
18 squared + 24 = x
(18 + 24) squared = x squared
18 squared + 24 squared = x squared
Step-by-step explanation:
8^2 /2+5(15-7)
=64/2+75-35
=32+40
=72
<span><span>3<span>(<span>5−9</span>)</span></span>+<span>4<span>(<span>4−9</span>)
</span></span></span><span>=<span><span><span>(3)</span><span>(<span>−4</span>)</span></span>+<span>4<span>(<span>4−9</span>)
</span></span></span></span><span>=<span><span>−12</span>+<span>4<span>(<span>4−9</span>)
</span></span></span></span><span>=<span><span>−12</span>+<span><span>(4)</span><span>(<span>−5</span>)
</span></span></span></span><span>=<span><span>−12</span>+<span>−20
</span></span></span><span>=<span>−32
</span></span><span><span>10<span>(<span>9−18</span>)</span></span>−<span>32
</span></span><span>=<span><span><span>(10)</span><span>(<span>−9</span>)</span></span>−<span>32
</span></span></span><span>=<span><span>−90</span>−<span>32
</span></span></span><span>=<span><span>−90</span>−9
</span></span><span>=<span>−<span>99
</span></span></span><span><span>−<span>12<span>(<span>5−7</span>)</span></span></span>−<span>10<span>(<span>2−5</span>)
</span></span></span><span>=<span><span><span>(<span>−12</span>)</span><span>(<span>−2</span>)</span></span>−<span>10<span>(<span>2−5</span>)
</span></span></span></span><span>=<span>24−<span>10<span>(<span>2−5</span>)
</span></span></span></span><span>=<span>24−<span><span>(10)</span><span>(<span>−3</span>)
</span></span></span></span><span>=<span>24−<span>(<span>−30</span>)
</span></span></span><span>=<span>54</span></span>