1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kruka [31]
3 years ago
12

How to simplify this expression??

Mathematics
2 answers:
sdas [7]3 years ago
8 0

Answer :

1

Step-by-step-explanation :

{x}^{2}  + 4x + 5 -  {(x + 2)}^{2}  \\  {x}^{2}  + 4x + 5 - ( {x}^{2}  + 4x + 4)   \\

{x}^{2}  + 4x + 5 -  {x}^{2}  - 4x - 4 =  {x}^{2}  -  {x}^{2}  + 4x - 4x + 5 - 4 = 5 - 4 = 1

Mars2501 [29]3 years ago
3 0

Answer:

(x+1)  •  (x-5)

Step-by-step explanation:

The first term is,  x2  its coefficient is  1 .

The middle term is,  -4x  its coefficient is  -4 .

The last term, "the constant", is  -5  

Step-1 : Multiply the coefficient of the first term by the constant   1 • -5 = -5  

Step-2 : Find two factors of  -5  whose sum equals the coefficient of the middle term, which is   -4 .

     -5    +    1    =    -4    That's it

Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  -5  and  1  

                    x2 - 5x + 1x - 5

Step-4 : Add up the first 2 terms, pulling out like factors :

                   x • (x-5)

             Add up the last 2 terms, pulling out common factors :

                    1 • (x-5)

Step-5 : Add up the four terms of step 4 :

                   (x+1)  •  (x-5)

You might be interested in
Calculus 3 help please.​
Reptile [31]

I assume each path C is oriented positively/counterclockwise.

(a) Parameterize C by

\begin{cases} x(t) = 4\cos(t) \\ y(t) = 4\sin(t)\end{cases} \implies \begin{cases} x'(t) = -4\sin(t) \\ y'(t) = 4\cos(t) \end{cases}

with -\frac\pi2\le t\le\frac\pi2. Then the line element is

ds = \sqrt{x'(t)^2 + y'(t)^2} \, dt = \sqrt{16(\sin^2(t)+\cos^2(t))} \, dt = 4\,dt

and the integral reduces to

\displaystyle \int_C xy^4 \, ds = \int_{-\pi/2}^{\pi/2} (4\cos(t)) (4\sin(t))^4 (4\,dt) = 4^6 \int_{-\pi/2}^{\pi/2} \cos(t) \sin^4(t) \, dt

The integrand is symmetric about t=0, so

\displaystyle 4^6 \int_{-\pi/2}^{\pi/2} \cos(t) \sin^4(t) \, dt = 2^{13} \int_0^{\pi/2} \cos(t) \sin^4(t) \,dt

Substitute u=\sin(t) and du=\cos(t)\,dt. Then we get

\displaystyle 2^{13} \int_0^{\pi/2} \cos(t) \sin^4(t) \, dt = 2^{13} \int_0^1 u^4 \, du = \frac{2^{13}}5 (1^5 - 0^5) = \boxed{\frac{8192}5}

(b) Parameterize C by

\begin{cases} x(t) = 2(1-t) + 5t = 3t - 2 \\ y(t) = 0(1-t) + 4t = 4t \end{cases} \implies \begin{cases} x'(t) = 3 \\ y'(t) = 4 \end{cases}

with 0\le t\le1. Then

ds = \sqrt{3^2+4^2} \, dt = 5\,dt

and

\displaystyle \int_C x e^y \, ds = \int_0^1 (3t-2) e^{4t} (5\,dt) = 5 \int_0^1 (3t - 2) e^{4t} \, dt

Integrate by parts with

u = 3t-2 \implies du = 3\,dt \\\\ dv = e^{4t} \, dt \implies v = \frac14 e^{4t}

\displaystyle \int u\,dv = uv - \int v\,du

\implies \displaystyle 5 \int_0^1 (3t-2) e^{4t} \,dt = \frac54 (3t-2) e^{4t} \bigg|_{t=0}^{t=1} - \frac{15}4 \int_0^1 e^{4t} \,dt \\\\ ~~~~~~~~ = \frac54 (e^4 + 2) - \frac{15}{16} e^{4t} \bigg|_{t=0}^{t=1} \\\\ ~~~~~~~~ = \frac54 (e^4 + 2) - \frac{15}{16} (e^4 - 1) = \boxed{\frac{5e^4 + 55}{16}}

(c) Parameterize C by

\begin{cases} x(t) = 3(1-t)+t = -2t+3 \\ y(t) = (1-t)+2t = t+1 \\ z(t) = 2(1-t)+5t = 3t+2 \end{cases} \implies \begin{cases} x'(t) = -2 \\ y'(t) = 1 \\ z'(t) = 3 \end{cases}

with 0\le t\le1. Then

ds = \sqrt{(-2)^2 + 1^2 + 3^2} \, dt = \sqrt{14} \, dt

and

\displaystyle \int_C y^2 z \, ds = \int_0^1 (t+1)^2 (3t+2) \left(\sqrt{14}\,ds\right) \\\\ ~~~~~~~~ = \sqrt{14} \int_0^1 \left(3t^3 + 8t^2 + 7t + 2\right) \, dt \\\\ ~~~~~~~~ = \sqrt{14} \left(\frac34 t^4 + \frac83 t^3 + \frac72 t^2 + 2t\right) \bigg|_{t=0}^{t=1} \\\\ ~~~~~~~~ = \sqrt{14} \left(\frac34 + \frac83 + \frac72 + 2\right) = \boxed{\frac{107\sqrt{14}}{12}}

8 0
1 year ago
James had $200 he wanted to buy a pen which cost $5 how many pens can he buy?
liq [111]
200/5=40
He can buy 40 pens!! 
Hope this helps!! 

3 0
4 years ago
The flow of electricity is an​
Alecsey [184]
Electric current? Why is the thing math lol.
4 0
3 years ago
What is the completely factored form of x2 – 16xy + 64y2?
Korolek [52]

Answer:

(x-8y)(x-8y) or (x-8y)^2

5 0
3 years ago
Read 2 more answers
If quadrilateral PQRS is a rectangle, then which of the following is true? ∠PSQ ≅ ∠QSR segment SR ≅ segment RQ segment PS ≅ segm
natima [27]

Answer:

Because the diagonals of a rectangle are congruent, the statement "segment SQ ≅ segment PR" is true.

5 0
3 years ago
Other questions:
  • A.
    9·1 answer
  • Mrs. Smith paid $6.60 for a dozen donuts. What is the cost per donut in dollars and cents?​
    6·2 answers
  • If EF = (7x + 8), FG = (9x - 8), and EG = 128, find the values of x, EF, and FG.
    13·1 answer
  • Write an algebraic expression for the product of two and the sum of four and twice a number. Plz help! :(
    15·1 answer
  • Please help #9 <br><br> Thanks if help!
    9·2 answers
  • 4
    15·1 answer
  • Plz help i need it!!
    9·1 answer
  • Helpppp pleaseeeeee!!!
    13·2 answers
  • Find x if 5, 9, 11, 12, 13, 14, 17 and x have a mean of 12.
    11·1 answer
  • ABCD is a rhombus such that ∠BCD = 30°, find ∠BAD.​
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!