Answer:
option a c d are correct
Step-by-step explanation:
Answer:
0.025 grams
Step-by-step explanation:
The water in the stopcock has a volume of 25 mL initially, After that, the whole water was drained out. So we have:
Volume of drained water = (25 mL)(1 x 10⁻⁶ m³/1 mL)
Volume of drained water = 25 x 10⁻⁶ m³
Density of drained water = 1000 kg/m³
So, for the mass of drained water:
Density of drained water = Mass of drained water/Volume of drained water
Mass of drained water = (Density of drained water)(Volume of drained water)
Mass of drained water = (1000 kg/m³)(25 x 10⁻⁶ m³)
<u>Mass of drained water = 0.025 gram</u>
Density
For the answer to the question above,
1 + nx + [n(n-1)/(2-factorial)](x)^2 + [n(n-1)(n-2)/3-factorial] (x)^3
<span>1 + nx + [n(n-1)/(2 x 1)](x)^2 + [n(n-1)(n-2)/3 x 2 x 1] (x)^3 </span>
<span>1 + nx + [n(n-1)/2](x)^2 + [n(n-1)(n-2)/6] (x)^3 </span>
<span>1 + 9x + 36x^2 + 84x^3 </span>
<span>In my experience, up to the x^3 is often adequate to approximate a route. </span>
<span>(1+x) = 0.98 </span>
<span>x = 0.98 - 1 = -0.02 </span>
<span>Substituting: </span>
<span>1 + 9(-0.02) + 36(-0.02)^2 + 84(-0.02)^3 </span>
<span>approximation = 0.834 </span>
<span>Checking the real value in your calculator: </span>
<span>(0.98)^9 = 0.834 </span>
<span>So you have approximated correctly. </span>
<span>If you want to know how accurate your approximation is, write out the result of each in full: </span>
<span>1 + 9(-0.02) + 36(-0.02)^2 + 84(-0.02)^3 = 0.833728 </span>
<span> (0.98)^9 = 0.8337477621 </span>
<span>So it is correct to 4</span>
(side note: your formula C = 2πr^2 is incorrect, it should be C = 2πr)
Answer:
r = 9
Step-by-step explanation:
First let's find the circumference of Circle A. To use the formula we need radius. Since we have a diameter just divide by 2 to get radius. 27 / 2 = 13.5
Now plug that into C = 2πr: 2π*(13.5) = 27π
The question says that the area of circle B is 3x this value, so Circle B's area must be: 27π * 3 = 81π
Now plug that into A = πr^2 and solve for r:

(edited to correct a brain fart)