Explanation:
Assuming that moles of nitrogen present are 0.227 and moles of hydrogen are 0.681. And, initially there are 0.908 moles of gas particles.
This means that, for
moles of
+ moles of
= 0.908 mol
Since, 2 moles of
=
= 0.454 mol
As it is known that the ideal gas equation is PV = nRT
And, as the temperature and volume were kept constant, so we can write
=
= 
=
= 5.2 atm
Therefore, we can conclude that the expected pressure after the reaction was completed is 5.2 atm.
Hey there!:
Concentration of NaOH = 0.200 M
Concentration of HNO₃= 0.200 M
Total volume = 50.0 mL + 60.0 mL = 110 mL=> 0.11 L
The neutralization reaction between NaOH and HNO3 :
OH⁻ + H⁺ ----------> H₂O
So :
n ( H⁺ ) = 60 mL * 0.200 M / 1000 mL => 0.012 moles of H⁺
n ( OH⁻ ) = 50 mL 0.200 M / 1000 mL => 0.01 moles of OH⁻
Hence OH⁻ is limiting reagent .
Remaining moles of H⁺ = 0.012 - 0.01 => 0.002 moles
Concentration of H⁺ = 0.002 M / 0.11 L
Concentration of H⁺ = 0.01818 moles/L
Therefore:
pH = - log [ H⁺ ]
pH = - log [ 0.01818 ]
pH = 1.74
Hope that helps!
We must know that molarity is a unit for concentration and it is expressed as:
molarity = moles / liters
The molarity is 100 millimolar, or 0.1 molar. The volume is 250 ml, or 0.25 liters. Using the formula above, we find the moles of benzoic acid required.
moles = molarity * liters
moles = 0.1 * 0.25
moles = 0.025
Next, we know that the molar mass for benzoic acid is 122.12 g/mol and the moles of a substance are given by:
moles = mass / molar mass
mass = moles * molar mass
mass = 0.025 * 122.12
mass = 3.05 grams
You will need to weigh out 3.05 grams of benzoic acid
A 2.200-g sample of quinone (C6H4O2) is burned in a bomb calorimeter whose total heat capacity is 7.854<span> kJ/°C. The temperature of the calorimeter increases from 23.44 to </span>30.57 °C<span>. </span>
Answer:
2.5.2 Atomistic Configurations of Oxygen in Silicon Crystals
Oxygen atoms are incorporated in the silicon lattice on an interstitial position (denoted by Oi), where the oxygen atom sits in an almost bond-centered position between two adjacent Si atoms [101]. Several of the local vibration modes are infrared (IR) active. The predominant IR line at 1104/cm (at room temperature) was calibrated with respect to other analytical methods, such as gas fusion and several radioactive techniques, and is used as the standard method for the quantitative determination of the oxygen content in as-grown silicon crystals (as-grown silicon usually contains only a negligible amount of precipitated oxygen).