Answer:
ez pts tysm
Step-by-step explanation:
Im not sure, you didn't put a question
Answer:
case 2 with two workers is the optimal decision.
Step-by-step explanation:
Case 1—One worker:A= 3/hour Poisson, ¡x =5/hour exponential The average number of machines in the system isL = - 3. = 4 = lJr machines' ix-A 5 - 3 2 2Downtime cost is $25 X 1.5 = $37.50 per hour; repair cost is $4.00 per hour; and total cost per hour for 1worker is $37.50 + $4.00
= $41.50.Downtime (1.5 X $25) = $37.50 Labor (1 worker X $4) = 4.00
$41.50
Case 2—Two workers: K = 3, pl= 7L= r= = 0.75 machine1 p. -A 7 - 3Downtime (0.75 X $25) = S J 8.75Labor (2 workers X S4.00) = 8.00S26.75Case III—Three workers:A= 3, p= 8L= ——r = 5- ^= § = 0.60 machinepi -A 8 - 3 5Downtime (0.60 X $25) = $15.00 Labor (3 workers X $4) = 12.00 $27.00
Comparing the costs for one, two, three workers, we see that case 2 with two workers is the optimal decision.
You need to find "two-fifths of 30." Of here means multiplication:
![\begin{aligned}\dfrac{2}{5}\cdot 30 &= \dfrac{2}{5}\cdot\dfrac{30}{1}\\[0.5em] &= \dfrac{60}{5}\\[0.5em] &= 12\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7D%5Cdfrac%7B2%7D%7B5%7D%5Ccdot%2030%20%26%3D%20%5Cdfrac%7B2%7D%7B5%7D%5Ccdot%5Cdfrac%7B30%7D%7B1%7D%5C%5C%5B0.5em%5D%20%26%3D%20%5Cdfrac%7B60%7D%7B5%7D%5C%5C%5B0.5em%5D%20%26%3D%2012%5Cend%7Baligned%7D)
There are 12 athletes in the club.
GIVEN:
We are given a parallelogram WXYZ with diagonals WY and XZ.
Required;
Prove that XZ bisects WY.
Explanation;
From the diagram provided, we can draw the following conclusion;

Also, we have;