Answer:
- Cos 45=6/x
x=6/cos 45=6√2
x=6√2
tan 45=y/6
y=tan45 ×6
y=6
2.
sin 60=y/10
y=sin60×10
y=5√3
again
Cos 60=x/10
x=½×10
x=5
3.
Sin 45=x/5
x=1/√2×5 or
x=5√2/2
again
y=5√2/2 or 5/√2[base angle of right angled isosceles triangle]
4.
Sin 30=8/x
½×x=8
x=8*2
x=16
again
cos 30= y/x
√3/2×16=y
y=8√3
5.
sin 60=7/x
x=7/[√3/2]
x=14/√3 or 14√3/3
again
cos 60=y/x
½×14√3/3=y
7√3/2=y
y=7√3/2
<u>N</u><u>o</u><u>t</u><u>e</u><u>:</u>
<u>S</u><u>i</u><u>n</u><u> </u><u>a</u><u>n</u><u>g</u><u>l</u><u>e</u><u> </u><u>=</u><u>p</u><u>e</u><u>r</u><u>p</u><u>e</u><u>n</u><u>d</u><u>i</u><u>c</u><u>u</u><u>l</u><u>a</u><u>r</u><u>/</u><u>h</u><u>y</u><u>p</u><u>o</u><u>t</u><u>e</u><u>n</u><u>u</u><u>s</u><u>e</u>
<u>C</u><u>o</u><u>s</u><u> </u><u>a</u><u>n</u><u>g</u><u>l</u><u>e</u><u> </u><u>=</u><u>b</u><u>a</u><u>s</u><u>e</u><u>/</u><u>h</u><u>y</u><u>p</u><u>o</u><u>t</u><u>e</u><u>n</u><u>u</u><u>s</u><u>e</u>
<u>T</u><u>a</u><u>n</u><u> </u><u>a</u><u>n</u><u>g</u><u>l</u><u>e</u><u> </u><u>=</u><u>p</u><u>e</u><u>r</u><u>p</u><u>e</u><u>n</u><u>d</u><u>i</u><u>c</u><u>u</u><u>l</u><u>a</u><u>r</u><u> </u><u>/</u><u>b</u><u>a</u><u>s</u><u>e</u>
If you need to get to nine the answer is...
6+3 or 3x1+6
Answer:
3 terms. All of the numbers are considered terms.
Step-by-step explanation:
If it asked for variables, it would be 2.
Answer:
the answer is F. because n x 30 would = 360 and the n would be 12 so he paid 12 dollars per ticket and I got that answer by dividing the two numbers 30 and 360
brainliest plz
Answer:

Step-by-step explanation:
Given:
The quadratic function is given as:

The standard form of a quadratic function is given as:
, where, 'a', 'h' and 'k' are real numbers.
Now, in order to convert the given function to standard form, we use completing by square method.
![-x^2+2x=-(x^2-2x)=-[(x-2)^2-2^2]=-[(x-2)^2-4]=-(x-2)^2+4](https://tex.z-dn.net/?f=-x%5E2%2B2x%3D-%28x%5E2-2x%29%3D-%5B%28x-2%29%5E2-2%5E2%5D%3D-%5B%28x-2%29%5E2-4%5D%3D-%28x-2%29%5E2%2B4)
Now,
can be rewritten as:

Therefore, the standard form of the function is:
