Its A- Parallel lines formed by the image…
Answer:
B) Figure B has the same number of edges as Figure A
D) Figure B has the same number of angles as Figure A
E) Figure B has angles with the same measures as Figure A
Step-by-step explanation:
we know that
If two figures are similar, then the ratio of its corresponding sides is proportional and its corresponding angles are congruent
In this problem
If Figure B is a scaled copy of Figure A
then
Figure A and Figure B are similar
therefore
<u><em>The statements that must be true are</em></u>
B) Figure B has the same number of edges as Figure A
D) Figure B has the same number of angles as Figure A
E) Figure B has angles with the same measures as Figure A
•cccccccccccccccccccccccccc
A irrational number is a number that can't be expressed as a ratio of two whole numbers. That's it.
For examples (in increasing order of difficulty)
1 is a rational number because it is 1/1
0.75 is a rational number because it is equal to 3/4
2.333... (infinite number of digits, all equal to three) is rational because it is equal to 7/3.
sqrt(2) is not a rational number. This is not completely trivial to show but there are some relatively simple proofs of this fact. It's been known since the greek.
pi is irrational. This is much more complicated and is a result from 19th century.
As you see, there is absolutely no mention of the digits in the definition or in the proofs I presented.
Now the result that you probably hear about and wanted to remember (slightly incorrectly) is that a number is rational if and only if its decimal expansion is eventually periodic. What does it mean ?
Take, 5/700 and write it in decimal expansion. It is 0.0057142857142857.. As you can see the pattern "571428" is repeating in the the digits. That's what it means to have an eventually periodic decimal expansion. The length of the pattern can be anything, but as long as there is a repeating pattern, the number is rational and vice versa.
As a consequence, sqrt(2) does not have a periodic decimal expansion. So it has an infinite number of digits but moreover, the digits do not form any easy repeating pattern.
Answer:

<u>Or in Decimal:</u>

Step-by-step explanation:
<u>Given expression :-</u>

<u>Solution :-</u>

This arithmetic expression may be rewritten as ;

Step 1 : <u>Cancel the zero of 10 and one zero of 100</u> :-

<em>Results to;</em>


Step 2: <u>Cancel 26 and 10</u><u> </u><u>by 2</u> :-

<em>Results to;</em>


<em>It can also be in Decimal.</em>
That is;

Hence, the answer of the expression would be 13/5 or 2.6 .

I hope this helps!
Let me know if you have any questions.
I am joyous to help!