Answer:
Step-by-step explanation:
<u>Given:</u>
- r(x) = 18x and
- c(x) = 8x+ 30
<u>Find p(x) by substituting the above into the following equation:</u>
- p(x) = r(x) - c(x)
- p(x) = 18x - (8x + 30) = 18x - 8x - 30 = 10x - 30
Correct choice is A
Answer:
0.3(8.2 x 10^-3) = 2.46 X 10 ^ -3
Step-by-step explanation:
We need to solve the equation 0.3(8.2 x 10^-3) and write answer in scientific notation.
Solving,
= 0.3(8.2 x 10^-3)
= 0.3 * 0.0082
= 0.00246
Writing in scientific notation
= 2.46 X 10 ^ -3
So, after solving the expression 0.3(8.2 x 10^-3) the result is 2.46 X 10 ^ -3.
Answer: Third option
Step-by-step explanation:
Remember that:
![\sqrt[n]{x^n}=x](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7Bx%5En%7D%3Dx)
And the Product of powers property:

The expression is:
![\sqrt[4]{\frac{3}{2x}}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B%5Cfrac%7B3%7D%7B2x%7D%7D)
To simplify this expression, you need to multiply the denominator and the numerator by
. Then:
![\frac{\sqrt[4]{3}}{\sqrt[4]{2x}}=\frac{\sqrt[4]{3(2^3x^3)}}{\sqrt[4]{2x(2^3x^3)}}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B4%5D%7B3%7D%7D%7B%5Csqrt%5B4%5D%7B2x%7D%7D%3D%5Cfrac%7B%5Csqrt%5B4%5D%7B3%282%5E3x%5E3%29%7D%7D%7B%5Csqrt%5B4%5D%7B2x%282%5E3x%5E3%29%7D%7D)
Simplifiying, you get:
![\frac{\sqrt[4]{3(8x^3)}}{\sqrt[4]{2x(2^3x^3)}}=\frac{\sqrt[4]{24x^3}}{\sqrt[4]{2^4x^4}}=\frac{\sqrt[4]{24x^3}}{2x}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B4%5D%7B3%288x%5E3%29%7D%7D%7B%5Csqrt%5B4%5D%7B2x%282%5E3x%5E3%29%7D%7D%3D%5Cfrac%7B%5Csqrt%5B4%5D%7B24x%5E3%7D%7D%7B%5Csqrt%5B4%5D%7B2%5E4x%5E4%7D%7D%3D%5Cfrac%7B%5Csqrt%5B4%5D%7B24x%5E3%7D%7D%7B2x%7D)
Answer:
2 m
Step-by-step explanation:
The length and width of a rectangular garden is 10 m and 3 m respectively.
He will double the area of the garden by adding the same number of meters to both the length and the width. Area = 2(10 × 3) = 60 m².
Let x is amount of increase in the length and width such that area will be :
(10+x)(3+x) =60
30+10x+3x+x² = 60
x²+13x-30=0
x²+15x-2x-30=0
x(x+15)-2(x+15)=0
x=2 and x = -15
Neglecting negative value, he aded 2 m toboth length and width of the garden.