The idea that the Earth is alive may be as old as humankind. The ancient Greeks gave her the powerful name Gaia and looked on her as a goddess. Before the nineteenth century even scientists were comfortable with the notion of a living Earth. According to the historian D. B. McIntyre (1963), James Hutton, often known as the father of geology, said in a lecture before the Royal Society of Edinburgh in the 1790s that he thought of the Earth as a superorganism and that its proper study would be by physiology. Hutton went on to make the analogy between the circulation of the blood, discovered by Harvey, and the circulation of the nutrient elements of the Earth and of the way that sunlight distills water from the oceans so that it may later fall as rain and so refresh the earth.
This wholesome view of our planet did not persist into the next century. Science was developing rapidly and soon fragmented into a collection of nearly independent professions. It became the province of the expert, and there was little good to be said about interdisciplinary thinking. Such introspection was inescapable. There was so much information to be gathered and sorted. To understand the world was a task as difficult as that of assembling a planet-size jigsaw puzzle. It was all too easy to lose sight of the picture in the searching and sorting of the pieces.
When we saw a few years ago those first pictures of the Earth from space, we had a glimpse of what it was that we were trying to model. That vision of stunning beauty; that dappled white and blue sphere stirred us all, no matter that by now it is just a visual cliché. The sense of reality comes from matching our personal mental image of the world with that we perceive by our senses. That is why the astronaut's view of the Earth was so disturbing. It showed us just how far from reality we had strayed.
The Earth was also seen from space by the more discerning eye of instruments, and it was this view that confirmed James Hutton's vision of a living planet. When seen in infrared light, the Earth is a strange and wonderful anomaly among the planets of the solar system. Our atmosphere, the air we breathe, was revealed to be outrageously out of equilibrium in a chemical sense. It is like the mixture of gases that enters the intake manifold of an internal combustion engine, i.e., hydrocarbons and oxygen mixed, whereas our dead partners Mars and Venus have atmospheres like gases exhausted by combustion.
The unorthodox composition of the atmosphere radiates so strong a signal in the infrared range that it could be recognized by a spacecraft far outside the solar system. The information it carries is prima facie evidence for the presence of life. But more than this, if the Earth's unstable atmosphere was seen to persist and was not just a chance event, then it meant that the planet was alive—at least to the extent that it shared with other living organisms that wonderful property, homeostasis, the capacity to control its chemical composition and keep cool when the environment outside is changi
This wholesome view of our planet did not persist into the next century. Science was developing rapidly and soon fragmented into a collection of nearly independent professions. It became the province of the expert, and there was little good to be said about interdisciplinary thinking. Such introspection was inescapable. There was so much information to be gathered and sorted. To understand the world was a task as difficult as that of assembling a planet-size jigsaw puzzle. It was all too easy to lose sight of the picture in the searching and sorting of the pieces.
When we saw a few years ago those first pictures of the Earth from space, we had a glimpse of what it was that we were trying to model. That vision of stunning beauty; that dappled white and blue sphere stirred us all, no matter that by now it is just a visual cliché. The sense of reality comes from matching our personal mental image of the world with that we perceive by our senses. That is why the astronaut's view of the Earth was so disturbing. It showed us just how far from reality we had strayed.
The Earth was also seen from space by the more discerning eye of instruments, and it was this view that confirmed James Hutton's vision of a living planet. When seen in infrared light, the Earth is a strange and wonderful anomaly among the planets of the solar system. Our atmosphere, the air we breathe, was revealed to be outrageously out of equilibrium in a chemical sense. It is like the mixture of gases that enters the intake manifold of an internal combustion engine, i.e., hydrocarbons and oxygen mixed, whereas our dead partners Mars and Venus have atmospheres like gases exhausted by combustion.
The unorthodox composition of the atmosphere radiates so strong a signal in the infrared range that it could be recognized by a spacecraft far outside the solar system. The information it carries is prima facie evidence for the presence of life. But more than this, if the Earth's unstable atmosphere was seen to persist and was not just a chance event, then it meant that the planet was alive—at least to the extent that it shared with other living organisms that wonderful property, homeostasis, the capacity to control its chemical composition and keep cool when the environment outside is changi
3
0