Answer:
Tap A 3hrs
Tap B 6hrs
Step-by-step explanation:
Let the volume of the swimming pool be Xm^3.
Now, to get the appropriate volume, we know we need to multiply the rate by the time. Let the rate of the taps be R1 and R2 respectively, while the time taken to fill the swimming pool be Ta and Tb respectively.
x/Ta= Ra
x/Tb= Rb
X/(Ra + Rb)= 2
Ta = Tb - 3
From equation 2:
X = 2( Ra + Rb)
Substituting the values of Ra and Rb Using the first set of equations
X = 2( x/Ta + x/Tb)
But Ta = Tb - 3
1/2 = 1/(Tb - 3)+ 1/Tb
0.5 = (Tb + Tb-3)/Tb(Tb - 3)
At this juncture let’s say Tb = y
0.5 = (2y - 3)/y(y - 3)
y(y-3 ) = 4y - 6
y^2 -3y - 4y + 6 = 0
y^2 -7y + 6= 0
Solving the quadratic equation, we get y =
y = Tb = 6hrs or 1hr
We remove one hour as we know that Tap A takes 3hrs left than tap B and there is nothing like negative hours
Now, we get Ta by Tb -3 = 6 - 3 = 3hrs
Answer:
-1/11
Step-by-step explanation:
add 1/6 to both sides
make the same denominator 12 on the right side
solve
multiply by 12 both sides
11x= -1 divide by 11
x= -1/11
Answer: 44
solution: x+(x+2)+(x+4)+(x+6)+(x+8)=200
5x+20=200
5x=180
x=36
5th number - x+8=36+8=44
<h2>Steps:</h2>
So for this, we will be completing the square to solve for m. Firstly, subtract 8 on both sides:

Next, divide both sides by 2:

Next, we want to make the left side of the equation a perfect square. To find the constant of this perfect square, divide the m coefficient by 2, then square the quotient. In this case:
-8 ÷ 2 = -4, (-4)² = 16
Add 16 to both sides of the equation:

Next, factor the left side:

Next, square root both sides of the equation:

Next, add 4 to both sides of the equation:

Now, while this is your answer, you can further simplify the radical using the product rule of radicals:
- Product rule of radicals: √ab = √a × √b
√12 = √4 × √3 = 2√3.

<h2>Answer:</h2>
In exact form, your answer is 
In approximate form, your answers are (rounded to the hundreths) 