1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anna11 [10]
3 years ago
9

Y''+y'+y=0, y(0)=1, y'(0)=0

Mathematics
1 answer:
mars1129 [50]3 years ago
3 0

Answer:

y=e^{\frac{-t}{2}}\left ( \cos\left ( \frac{\sqrt{3}t}{2} \right )+\frac{1}{\sqrt{3}}\sin \left ( \frac{\sqrt{3}t}{2} \right ) \right )

Step-by-step explanation:

A second order linear , homogeneous ordinary differential equation has form ay''+by'+cy=0.

Given: y''+y'+y=0

Let y=e^{rt} be it's solution.

We get,

\left ( r^2+r+1 \right )e^{rt}=0

Since e^{rt}\neq 0, r^2+r+1=0

{ we know that for equation ax^2+bx+c=0, roots are of form x=\frac{-b\pm \sqrt{b^2-4ac}}{2a} }

We get,

y=\frac{-1\pm \sqrt{1^2-4}}{2}=\frac{-1\pm \sqrt{3}i}{2}

For two complex roots r_1=\alpha +i\beta \,,\,r_2=\alpha -i\beta, the general solution is of form y=e^{\alpha t}\left ( c_1\cos \beta t+c_2\sin \beta t \right )

i.e y=e^{\frac{-t}{2}}\left ( c_1\cos\left ( \frac{\sqrt{3}t}{2} \right )+c_2\sin \left ( \frac{\sqrt{3}t}{2} \right ) \right )

Applying conditions y(0)=1 on e^{\frac{-t}{2}}\left ( c_1\cos\left ( \frac{\sqrt{3}t}{2} \right )+c_2\sin \left ( \frac{\sqrt{3}t}{2} \right ) \right ), c_1=1

So, equation becomes y=e^{\frac{-t}{2}}\left ( \cos\left ( \frac{\sqrt{3}t}{2} \right )+c_2\sin \left ( \frac{\sqrt{3}t}{2} \right ) \right )

On differentiating with respect to t, we get

y'=\frac{-1}{2}e^{\frac{-t}{2}}\left ( \cos\left ( \frac{\sqrt{3}t}{2} \right )+c_2\sin \left ( \frac{\sqrt{3}t}{2} \right ) \right )+e^{\frac{-t}{2}}\left ( \frac{-\sqrt{3}}{2} \sin \left ( \frac{\sqrt{3}t}{2} \right )+c_2\frac{\sqrt{3}}{2}\cos\left ( \frac{\sqrt{3}t}{2} \right )\right )

Applying condition: y'(0)=0, we get 0=\frac{-1}{2}+\frac{\sqrt{3}}{2}c_2\Rightarrow c_2=\frac{1}{\sqrt{3}}

Therefore,

y=e^{\frac{-t}{2}}\left ( \cos\left ( \frac{\sqrt{3}t}{2} \right )+\frac{1}{\sqrt{3}}\sin \left ( \frac{\sqrt{3}t}{2} \right ) \right )

You might be interested in
Solve 2 1/4 + 6% = 6% -4%​
Novay_Z [31]

Answer:

God will help you and has a plan for you. Please don't cheat or look up answers. I used to be like you but I stopped. God always has a plan for you! Just remember this. He loves you. Share the message

Step-by-step explanation:

3 0
2 years ago
There are 10 counters in a bag: 3 are red, 2 are blue and 5 are green. The conents of the bag are shaken before Maxine randomly
luda_lava [24]
The probability is 3/20
7 0
3 years ago
Janet can get 36-pack of bottled water for $9.60. How much would Janet have to pay for a 12-pack of bottled water if the ratios
Olenka [21]
Janet would have to pay $3.20.
3 0
3 years ago
Mr. Hann is trying to decide how many new copies of a book to order for his students. Each book weighs 6ounces
Nina [5.8K]

Answer:

I’m afraid I can’t help you. The question makes no sense because the question doesn’t explain how many students there are. It just gives the weight of the books which I assume is useless

Step-by-step explanation:


3 0
3 years ago
Question:How many joules of gravitational potential energy are stored in an object that has a mass of 8.5 kilograms and is held
Ivenika [448]

Answer:

166.6 joules

Step-by-step explanation:

The formular for potential energy is Mgh

Mass is 8.5 kg

g = acceleration due to gravity (9.8)

height is 2 meters

= 8.5 × 9.8 × 2

= 166.6 joules

Hence the potential energy is 166.6 joules

8 0
3 years ago
Other questions:
  • A baker made 9 cupcakes 4 people want to share them equally how many will each person get
    5·1 answer
  • Please help. what is the quotient of 4m^12/x-1÷x^2/8m^3 assume x ≠ 0 and m≠0
    10·1 answer
  • 1. Find the intercepts of 6x - 2y = -24.
    5·1 answer
  • a factory makes 640 brushes in 4 hours. Does the equation y=150x model the number of brushes made each hour?
    11·1 answer
  • In the diagram below, is an altitude of DEF. What is the length of ? If necessary, round your answer to two decimal places.
    13·1 answer
  • 1. State the degree of the following polynomial:<br> x4y3
    11·1 answer
  • Find the value of x in the picture below. (Figure is not drawn to scale)
    7·1 answer
  • Subtract 0.6 - 0.23.
    5·1 answer
  • Please answer anyone!!!!!
    9·2 answers
  • Given an expression such as 3x + 2y, find the value of the expression when x is equal to 4 and y is equal to 2.4 Given an expres
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!