1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anna11 [10]
3 years ago
9

Y''+y'+y=0, y(0)=1, y'(0)=0

Mathematics
1 answer:
mars1129 [50]3 years ago
3 0

Answer:

y=e^{\frac{-t}{2}}\left ( \cos\left ( \frac{\sqrt{3}t}{2} \right )+\frac{1}{\sqrt{3}}\sin \left ( \frac{\sqrt{3}t}{2} \right ) \right )

Step-by-step explanation:

A second order linear , homogeneous ordinary differential equation has form ay''+by'+cy=0.

Given: y''+y'+y=0

Let y=e^{rt} be it's solution.

We get,

\left ( r^2+r+1 \right )e^{rt}=0

Since e^{rt}\neq 0, r^2+r+1=0

{ we know that for equation ax^2+bx+c=0, roots are of form x=\frac{-b\pm \sqrt{b^2-4ac}}{2a} }

We get,

y=\frac{-1\pm \sqrt{1^2-4}}{2}=\frac{-1\pm \sqrt{3}i}{2}

For two complex roots r_1=\alpha +i\beta \,,\,r_2=\alpha -i\beta, the general solution is of form y=e^{\alpha t}\left ( c_1\cos \beta t+c_2\sin \beta t \right )

i.e y=e^{\frac{-t}{2}}\left ( c_1\cos\left ( \frac{\sqrt{3}t}{2} \right )+c_2\sin \left ( \frac{\sqrt{3}t}{2} \right ) \right )

Applying conditions y(0)=1 on e^{\frac{-t}{2}}\left ( c_1\cos\left ( \frac{\sqrt{3}t}{2} \right )+c_2\sin \left ( \frac{\sqrt{3}t}{2} \right ) \right ), c_1=1

So, equation becomes y=e^{\frac{-t}{2}}\left ( \cos\left ( \frac{\sqrt{3}t}{2} \right )+c_2\sin \left ( \frac{\sqrt{3}t}{2} \right ) \right )

On differentiating with respect to t, we get

y'=\frac{-1}{2}e^{\frac{-t}{2}}\left ( \cos\left ( \frac{\sqrt{3}t}{2} \right )+c_2\sin \left ( \frac{\sqrt{3}t}{2} \right ) \right )+e^{\frac{-t}{2}}\left ( \frac{-\sqrt{3}}{2} \sin \left ( \frac{\sqrt{3}t}{2} \right )+c_2\frac{\sqrt{3}}{2}\cos\left ( \frac{\sqrt{3}t}{2} \right )\right )

Applying condition: y'(0)=0, we get 0=\frac{-1}{2}+\frac{\sqrt{3}}{2}c_2\Rightarrow c_2=\frac{1}{\sqrt{3}}

Therefore,

y=e^{\frac{-t}{2}}\left ( \cos\left ( \frac{\sqrt{3}t}{2} \right )+\frac{1}{\sqrt{3}}\sin \left ( \frac{\sqrt{3}t}{2} \right ) \right )

You might be interested in
Help me pleaseee!!!!!
Oksi-84 [34.3K]

Answer:

x  \: is \: 3 \:  \: when \: \:  \: y \: is \: 18 \\ x   \: is \: 4 \:  \: when \:  \: y \: is \: 24

5 0
2 years ago
Find the value of x please!!!
pav-90 [236]

Answer:

your answer is 20 because you subtract 110 by 90 because that is a right angles and all right angles are 90 degrees.

Step-by-step explanation:

4 0
3 years ago
Which expression is equivalent to b^m x b^n? A. b^m+n B. b^m-n C. b^mx n D. b^m/n
noname [10]
The formula for multiplying exponents are such below.

(b^m)^n = b^mn
b^m/b^n=b^(m-n)
b^m x b^n=b^(m+n)

4 0
3 years ago
Read 2 more answers
Is 3 a rational number or an irrational number
Sati [7]
It is a rational number
6 0
3 years ago
Read 2 more answers
The sum of two numbers is 31.5. The difference is 5.25. Find the numbers
ANTONII [103]
X+y=31.5
x-y=5.25

add 2 equations
x+y+x-y=31.5+5.25
2x=36.75
x=18.375
y=31.5-18.375=13.125
check : 18.375+13.125=31.5, 
18.375-13.125=5.25 
so
Answer:
18.375 and 13.125

8 0
3 years ago
Read 2 more answers
Other questions:
  • If Armons mother gave him a 10 dollar bill and said buy 5 pounds of bananas and apples. If bananas cost 80 cents per pound and a
    11·1 answer
  • Find the zeros of each function. State the multiplicity of any multiple zeros. (Please show work)
    13·1 answer
  • Can someone help me with
    10·1 answer
  • How many 2/7s are in 4
    12·2 answers
  • Evaluate the expression if a = 2.<br><br> 5a4 <br><br> A. 30 <br> B. 40 <br> C. 60 <br> D. 80
    12·1 answer
  • Column A Column B
    11·1 answer
  • Which postulate or theorem proves that A CFE and ADFE are congruent? o OSSS Congruence Postulate O SAS Congruence Postulate O AA
    7·1 answer
  • THI VIOS
    8·1 answer
  • HELP!!!! I WILL MARK YOU BRAINLIST
    8·1 answer
  • Which property is best used prove a quadrilateral is a rectangle?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!