Answer:
In conditions of low or no oxygen the process of anaerobic respiration occurs. The 'an' in 'anaerobic' means without. During anaerobic respiration, the oxidation of glucose is incomplete - not all of the energy can be released from the glucose molecule as it is only partially broken down.
Explanation:
Explanation:
<u>anaerobic process that restores NAD+ supply
</u>
<u></u>
Within cells, aerobic respiration may not occur due to several factors:
- - a lack of inorganic, final electron acceptors
- -incomplete or lack of a complete electron transport system
- -missing genes for enzymes within the Kreb's cycle
Thus, they utilize other means for the generation of energy in the form of ATP and to replenish NAD+ an oxidized form of NADH, the main electron carrier in glycolysis. Pyruvate is produced in the cytoplasm via glycolysis- it is also used as an electron acceptor in a process called fermentation.
Further Explanation:
overall: C6H12O6 (glucose) + 6 O2 → 6 CO2 + 6 H2O + ≈38 ATP
In all eukaryotic cells mitochondria are small cellular organelles bound by membranes, these make most of the chemical energy required for powering the biochemical reactions within the cell. This chemical energy is stored within the molecule ATP which is produced. Respiration in the mitochondria utilizes oxygen for the production of ATP in the Krebs’ or Citric acid cycle via the oxidization of pyruvate( through the process of glycolysis in the cytoplasm).
Oxidative phosphorylation describes a process in which the NADH and FADH2 made in previous steps of respiration process give up electrons in the electron transport chain these are converted it to their previous forms, NADH+ and FAD. Electrons continue to move down the chain the energy they release is used in pumping protons out of the matrix of the mitochondria.
This forms a gradient where there is a differential in the number of protons on either side of the membrane the protons flow or re-enter the matrix through the enzyme ATP synthase, which makes the energy storage molecules of ATP from the reduction of ADP. At the end of the electron transport, three molecules of oxygen accept electrons and protons to form molecules of water...
- Glycolysis: occurs in the cytoplasm 2 molecules of ATP are used to cleave glucose into 2 pyruvates, 4 ATP and 2 electron carrying NADH molecules. (2 ATP are utilized for a net ATP of 2)
- The Citric acid or Kreb's cycle: in the mitochondrial matrix- 6 molecules of CO2 are produced by combining oxygen and the carbon within pyruvate, 2 ATP oxygen molecules, 8 NADH and 2 FADH2.
- The electron transport chain, ETC: in the inner mitochondrial membrane, 34 ATP, electrons combine with H+ split from 10 NADH, 4 FADH2, renewing the number of electron acceptors and 3 oxygen; this forms 6 H2O, 10 NAD+, 4 FAD.
Learn more about cellular life at brainly.com/question/11259903
Learn more about cellular respiration at brainly.com/question/11203046
#LearnWithBrainly
The horse has a non-communicable disease.
Explanation:
- In the given situation, only one horse is effected this suggest that the cause of the disease is not present in any other horse.
- Though the horses were sleeping in same barn and sharing the same resources they did not get the disease. This clearly states that the disease does not spread from one individual to other but remains confined to only effected individual.
- Thus it is a non infectious or non-communicable disease.
Answer: Subarachnoid
Explanation:
The space in the meninges below the arachnoid membrane and above the pia mater contains the cerebrospinal fluid. Cerebrospinal fluid is produced by choriod plexus( a cluster of capillaries) from the blood. Blood vessels traveling within the subarachnoid space deliver oxygen and nutrients to the spinal cord.
Answer:
The bacteria infected with viruses that had radioactive DNA had become radioactive. The bacteria that had been infected with viruses marked with radioactive proteins were not radioactive.
Explanation:
The rest of the answers:
1.2
2.3
3.2
4.1
5.b