Answer:

Step-by-step explanation:
For this case in order to select the one admiral, captain and commander, all different. We are assuming that the order in the selection no matter, so we can begin selecting an admiral then a captain and then a commander.
So we have 10C1 ways to select one admiral since we want just one
Now we have remaining 9 people and we have 9C1 ways to select a captain since we want a captain different from the admiral selected first
Now we have remaining 8 people and we have 8C1 ways to select a commander since we want a commander different from the captain selected secondly.
The term nCx (combinatory) is defined as:

And by properties 
So then the number of possible way are:

If we select first the captain then the commander and finally the admiral we have tha same way of select 
For all the possible selection orders always we will see that we have 720 to select.
Hi! So because all the sides of the square are the same side, you multiple two of the side lengths together, so the area of the painting is 18 x 18 = 324 :) Good luck and do well in school!!!!!!!!
Answer:
34.43
Step-by-step explanation:
A differential of length in terms of t will be ...
dL(t) = √(x'(t)^2 +y'(t)^2)
where ...
x'(t) = 4cos(4t)
y'(t) = 7cos(7t)
The length of c(t) will be the integral of this differential on the interval [0, 2π].
Dividing that interval into 10 equal pieces means each one has a width of (2π)/10 = π/5. The midpoint of pieces numbered 1 to 10 will be ...
(π/5)(n -1/2), so the area of the piece will be ...
sub-interval area ≈ (π/5)·dL((π/5)(n -1/2))
It is convenient to let a spreadsheet or graphing calculator do the function evaluation and summing of areas.
__
The attachment shows the curve c(t) whose length we are estimating (red), and the differential length function (blue) we are integrating. We use the function p(n) to compute the midpoint of the sub-interval. The sum of sub-interval areas is shown as 34.43.
The length of the curve is estimated to be 34.43.