<h3>
Answer: 375</h3>
=========================================
Work Shown:
a = 300 = first term
r = 60/300 = 0.2 = common ratio
We multiply each term by 0.2, aka 1/5, to get the next term.
Since -1 < r < 1 is true, we can use the infinite geometric sum formula below
S = a/(1-r)
S = 300/(1-0.2)
S = 300/0.8
S = 375
----------
As a sort of "check", we can add up partial sums like so
- 300+60 = 360
- 300+60+12 = 360+12 = 372
- 300+60+12+2.4 = 372+2.4 = 374.4
- 300+60+12+2.4+0.48 = 374.4+0.48 = 374.88
and so on. The idea is that each time we add on a new term, we should be getting closer and closer to 375. I put "check" in quotation marks because it's probably not the rigorous of checks possible. But it may give a good idea of what's going on.
----------
Side note: If the common ratio r was either r < -1 or r > 1, then the terms we add on would get larger and larger. This would mean we don't approach a single finite value with the infinite sum.
Answer:
R2->R3
Step-by-step explanation:
What????????????
Don't post unless you really need help<span />
Answer:
-9
Step-by-step explanation:
-6/2 + -6 =
-6 divided by 2 = -3 =
-3+-6=
-9
Answer:
x = 18
m = 21.2
p = 31.8
Step-by-step explanation:
The ratio of the left-side length to the bottom-side length is the same for both triangles:
x/11.2 = (x +27)/28
28x = 11.2(x +27) = 11.2x +302.4 . . . . . multiply by 11.2·28
16.8x = 302.4 . . . . . . . subtract 11.2x
x = 18 . . . . . . . . . . . . divide by 16.8
__
The length of m can be found using the Pythagorean theorem. The sum of the squares of the legs is the square of the hypotenuse.
x^2 +11.2^2 = m^2
m = √(324 +125.44) = √449.44 = 21.2
__
The length of p can also be found using the Pythagorean theorem. We prefer the proportion ...
p/27 = m/x
p = 27(21.2/18) = 31.8
The lengths of the unknown sides in the figure are ...
x = 18
m = 21.2
p = 31.8